簡易檢索 / 詳目顯示

研究生: 游菘揚
YOU SONG YANG
論文名稱: 以超音波輔助高速3D列印成型技術懸浮液體均勻化之研究
The Study of Ultrasonic Effect for Suspended Liquid Homogenization on High Speed Vat-polymerization System
指導教授: 鄭正元
Jeng-Ywan Jeng
葉雲鵬
Yun-Peng Yeh
口試委員: 鄭正元
Jeng-Ywan Jeng
葉雲鵬
Yun-Peng Yeh
林上智
Shang-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 99
中文關鍵詞: 光固化3D列印高速列印低表面能超疏滑界面
外文關鍵詞: stereolithography, high speed printing, low surface energy, slippery interface
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超疏滑薄膜雖然能解決現今之下照式光固化技術中,列印速度的提升總受限於列印層脫離樹脂槽底的拉應力問題,實現了光固化的連續列印,但此塗層的壽命會在實際列印中而有所損耗,其塗層的總壽命太短而不能有效地進入現有市場。本研究在此超疏滑薄膜的塗層列印下,加裝了超音波震盪子,利用超音波的震盪原理,找出最佳的超音波震盪子安裝位置、頻率對此塗層壽命的影響,最後在對列印樣本外觀、樹脂槽列印到極限之後的型態進行探討。
    本研究最後發現,超音波震盪會使塗層中多孔性結構層中的全氟聚醚Perfluoropolyethers,PFPE)損耗降低,從而讓PFPE能更久的保護塗層,避免其受到破壞之外,也能協助破真空,使其達到提升超疏滑薄膜塗層壽命的效果。


    Although the slippery film can solve the current bottom-up stereolithography
    technology, the increase in printing speed is always limited by the tensile stress problem of
    the printing layer leaving the bottom of the resin tank, and realizes the continuous printing
    of Vat-polymerization, but the life of this surface will be lost in the actual printing, and the
    total life of the coating is often too short to effectively enter the existing market. In this study,
    under the coating printing of this ultraslipsible film, an ultrasonic oscillator is installed, and
    the ultrasonic oscillator principle is used to find out the optimal installation position of the
    ultrasonic oscillator and the influence of the frequency on the life of the coating, and finally
    the appearance of the printed sample and the shape of the resin tank after printing to the limit
    are discussed.
    In this study, it was found that ultrasonic oscillation will reduce the loss of
    perfluoropolyethers (PFPE) in the porous structural layer of the coating, so that PFPE can
    protect the coating for a longer time, avoid damage, and also assist in breaking the vacuum,
    so that it can achieve the effect of improving the life of the ultra-smooth film coating.

    目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究方法 4 第二章 文獻回顧 5 2.1 積層製造技術 5 2.2 光聚合固化成型(VAT photopolymerization)技術 8 2.2.1 上照式及下照式光固化技術 8 2.2.2 雷射成型技術 (Stereolithography Apparatus,SL or SLA) 10 2.2.3 投影機成型技術(Digital Light Processing,DLP) 11 2.2.4 液晶顯示成型技術(Liquid Crystal Display,LCD) 12 2.3 光固化聚合原理 14 2.4 降低下照式光固化3D列印分離力技術之方法 16 2.4.1 改變機構輔助解決分離力 16 2.4.2 液態介面連續列印技術(Continuous Liquid Interface Production, CLIP) 17 2.4.3 超低吸附表面能(Ultra-low Adhesive Energy Interface) 18 2.4.4 疏滑連續式3D列印成型技術 19 2.5 超音波原理 21 2.5.1 超音波振動加工 21 2.5.2 超音波振幅放大器 22 2.5.3 超音波振動系統 23 2.6 超音波對超疏滑薄膜壽命之影響 24 2.6.1 液體對超聲波振動端面的粘附(Liquid adhesion to an ultrasonically vibrating end surface) 24 2.6.2 大面積高速光固化3D列印超音波震盪脫膜成型技術之研究 25 第三章 系統架設及設備簡介 26 3.1 實驗材料與藥品 26 3.2 實驗樣品製備 26 3.3 使用設備與工具 27 3.4 機台架設 27 3.4.1 下照式動態光罩成型設備 27 3.4.2 DLP 投影機 31 3.4.3 S 型荷重元 31 3.4.4 光功率量測儀器(Optical Power Meter) 32 3.4.5 超音波震盪頭 32 3.5 機構控制軟體 33 3.5.1 下照式動態光照設備控制軟體 33 3.5.2 Loadcell 控制軟體 35 第四章 實驗方法 36 4.1 塗覆層結構製作 36 4.2 外表面活化改質 36 4.2.1 高溫氧化處理 36 4.2.2 表面氟化改質 36 4.3 超疏滑表面 36 4.4 實機列印 37 4.4.1 自製超音波機構設計 37 4.4.2 自設計樹脂槽製作 37 4.4.3 列印測試物件 38 4.4.4 實機列印參數設置 38 第五章 實驗結果 40 5.1 列印參數選擇與材料檢測 40 5.1.1 曝光之穿透深度檢測 40 5.1.2 傅立葉紅外線光譜儀(FTIR)材料檢測 41 5.1.3 SEM圖分析與接觸角測定 44 5.2 超音波有無之塗層壽命測試 48 5.3 16KHz、17KHz之塗層壽命測試 58 5.4 不同安裝位置之塗層壽命測試 63 5.5 大尺寸之超音波有無塗層壽命測試 73 5.6 列印塗層壽命達極限後之型態 76 5.7 列印件外觀 79 第六章 結論與未來研究 81 6.1 結論 81 6.2 未來展望 82 參考文獻 83 

    [1] Alsop, T.,3D printing market size worldwide from 2013 to 2021.2022; <https://www.statista.com/statistics/796237/worldwide-forecast-growth-3d-printing-market/>
    [2] Wohlers, T.T., Production of AM parts from independent service providers. Wohlers Report 2022, 2022.
    [3] 鄭正元,et al., 3D列印:積層製造技術與應用(第二版),2021:p.560.
    [4] 張浩威,大面積高速光固化3D列印成型技術之分離力研究,國立台北市臺灣科技大學機械工程系, 2019:p.73.
    [5] 黃冠騰, 快速光固化懸浮式3D列印成型技術之研究,國立台北市臺灣科技大學機械工程系, 2017:p.103.
    [6] 蔡秉勳, 超疏滑連續式3D列印成型技術之研究,國立台北市臺灣科技大學機械工程系, 2021:p.3.
    [7] Burns, M., Automated Fabrication, Section 6.5, 1993.
    [8] Zhang, L., et al.,From 3D Sensing to Printing. A Survey, 2015.
    [9] Hendrixson S., Infographic. Additive Family Tree, 2015.
    [10] Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography, 1984.
    [11] 黃文宗, 上照式光罩快速原型系統之研發,國立台北市臺灣科技大學機械工程系, 2001:p.58.
    [12] Santoliquido O., et al., Additive Manufacturing of ceramic components by Digital Light Processing. A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 2019.
    [13] Bártolo, P.J., Stereolithography: Materials, Processes and Applications, 2011.
    [14] Zhang, J., et al.,A comparative study of the osteogenic performance between the hierarchical micro/submicro-textured 3D-printed Ti6Al4V surface and the SLA surface, 2020.
    [15] Sangmyungdae G., et al., A 3D Food Printing Process for the New Normal Era: A Review, Korea, 2021.
    [16] Bomke P., "DLP printer brightness distribution correction in Monkeyprint." , 2016.
    [17] Mohamed G. A. M.,et al.,Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing, 2019.
    [18] 賀彥儒, 桌上型3D列印機之行銷策略-手機3D列印機案例分析, 國立台北市臺灣科技大學機械工程系, 2020:p.145.
    [19] 巫昆達, "高速UVLCD光固化3D列印系統開發之研究",國立台北市臺灣科技大學機械工程系, 2019.
    [20] 林鼎晸、李金銘, "大面積高速UVLCD光固化3D列印成型技術以提升背光模組光效率之研究", 國立台北市臺灣科技大學機械工程系, 2020.
    [21] 陳凱翔, "使用可量產塗佈技術製作高速光固化3D列印系統樹脂槽底膜之研發",國立台北市臺灣科技大學機械工程系, 2020.
    [22] 陳昱丞, "大面積光固化3D列印機之研發", 國立台北市臺灣科技大學機械工程系, 2021.
    [23] 游秉閎, "大面積LCD自然光光固化積層製造系統 背光模組開發設計與製作研究", 國立台北市臺灣科技大學機械工程系, 2021.
    [24] 劉德風, "行動裝置式光固化3D列印系統之開發與研究.", 國立台北市臺灣科技大學機械工程系, 2017.
    [25] 張富騰, "智慧型手機式3D列印系統開發之研究.", 國立台北市臺灣科技大學機械工程系, 2015.
    [26] 呂佺宸, "下照式手機3D列印系統提升解析度之研究.", 國立台北市臺灣科技大學機械工程系, 2018.
    [27] 吳嘉文, "3D列印機開發策略-以A公司為例.",國立台北市臺灣科技大學機械工程系, 2019.
    [28] Yan R., et al., Performance of UV curable lignin based epoxy acrylate coatings, 2018.
    [29] Yang, Z.J., et al., Preparation and mechanism of free-radical/cationic hybrid photosensitive resin with high tensile strength for three-dimensional printing applications. Journal of Applied Polymer Science, 2021. 138(8): p. 11.
    [30] 楊國明, et al., 高分子化學. 2011: 高立圖書.
    [31] 唐薰, et al., UV自由基固化和陽離子固化塗層的比較研究, 2011.
    [32] Xiangquan W., et al.,“Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model, ” Journal of Materials Processing Technology, pp. 184-196, 5 2017.
    [33] Chandra S., et al., IRJET, Continuous liquid interface production (CLIP), 2017.
    [34] Tumbleston, J.R., et al., Continuous liquid interface production of 3D objects. Science, 2015. 347(6228): p. 1349-1352.
    [35] Wu, L., et al., Bioinspired Ultra-Low Adhesive Energy Interface for Continuous 3D Printing: Reducing Curing Induced Adhesion. Science, 2018.
    [36] 殷立釗, "超音波輔助玻璃微結構熱壓成形研究", 國立交通大學機械工程學系, 2010.
    [37] 巧丞實業有限公司, "超音波介紹", <https://www.cici.com.tw/application-examples.html>
    [38] 吳俊賢, "大面積高速光固化3D列印超音波震盪脫膜成型技術之研究"國立台北市臺灣科技大學機械工程系, 2020.
    [39] 洪榮崇, "超音波振動於鋁合金成形加工的摩擦效應研究",國立交通大學機械工程學系, 2006.
    [40] Tamura S., et al. ,Liquid adhesion to an ultrasonically vibrating end surface, Journal of Applied Physics,2005.
    [41] 揚明光學股份有限公司, "NVR Plus UV Engine User Guide", 2019.
    [42] Sude M., et al., Study on bulk polymerization of methyl methacrylate initiated by low intensity ultrasonic irradiation, 2010.
    [43] Chen-bin G., et al., Bulk polymerization of methyl methacrylate initiated by high intensity ultrasonic irradiation and ESR study, 2002.
    [44] Hare, E.F. and E.G.S.W.A. Zisman, Properties of Films of Adsorbed Fluorinated Acids, 1954.

    無法下載圖示 全文公開日期 2027/07/27 (校內網路)
    全文公開日期 2027/07/27 (校外網路)
    全文公開日期 2027/07/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE