簡易檢索 / 詳目顯示

研究生: 劉紹麒
Shaou-Chi Liu
論文名稱: 頁寬式多雷射模組之高速積層製造技術開發於TPEE研究
Development of High-speed Page Wide Laser Additive Manufacturing technology and apply for TPEE research
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 林上智
Shang-Chih Lin
謝志華
Chih-Hua Hsieh
邱耀弘
Yao-Hung Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 98
中文關鍵詞: 高速積層製造頁寬式半導體雷射雷射源散熱TPEE雷射燒結
外文關鍵詞: High speed additive manufacturing technology, Page Wide diode laser, Laser source heat dissipation, TPEE, Laser sintering
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XV 第一章 、緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 實驗流程 3 1.4 論文架構 4 第二章 、文獻回顧 5 2.1 積層製造 5 2.1.1 粉末床熔融成形技術 6 2.1.2 選擇性雷射燒結 ( Selective laser sintering, SLS ) 7 2.2 高速積層製造 8 2.2.1 高速積層製造技術 13 2.3 雷射原理 17 2.3.1 半導體雷射 17 2.3.2 雷射源散熱 18 2.4 TPEE 應用於積層製造 (普通與3D列印) 21 2.5 粉末燒結 22 2.5.1 固相燒結 22 2.5.2 液相燒結 23 2.5.3 完全熔融 23 第三章 、頁寬式設備與TPEE先導實驗 24 3.1 頁寬式設備架構 24 3.1.1 機台內部架構 26 3.1.2 雷射模組架構 27 3.2 雷射源模組散熱 32 3.2.1 光學熱源 32 3.2.2 散熱架構設計與模擬 36 3.3 TPEE 基本性質測試 52 3.3.1 TPEE 熱性質分析-TGA 53 3.3.2 TPEE 分光光譜儀測試-Spectrophotometer 55 3.3.3 TPEE 熱性質分析-DSC 58 3.3.4 TPEE 粒徑分析 59 3.3.5 TPEE 複合粉末 62 3.4 TPEE預熱實驗 63 3.4.1 紅外線鹵素燈管預熱裝置 63 3.4.2 預熱測試 64 第四章 、實驗結果與討論 67 4.1 水冷系統 67 4.2 雷射源散熱驗證 72 4.3多雷射模組出光檢驗 74 4.3.1 電供設備 74 4.3.2 列印流程 76 4.3.3 出光測試 77 4.4 915nm半導體雷射燒結可行性測試 78 4.4.1 單層燒結之機台架構及碳黑比例測試 78 4.4.2 預熱燒結 82 4.5 TPEE列印測試結果 84 4.5.1 製備複合TPEE粉末 84 4.5.2 TPEE以商用機進行列印測試 87 4.5.3 機械性質測試 92 第五章 、結論與未來展望 95 5.1 結論 95 5.2 未來展望 96 參考文獻 97

    1. Ian Gibson IG. Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer; 2015.
    2. 鄭正元. 3D列印 積層製造技術與應用. 初版: 全華圖書; 2017.
    3. Gibson I, Rosen D, Stucker B. Powder bed fusion processes. Additive Manufacturing Technologies: Springer; 2015. p. 107-45.
    4. Yan C, Shi Y, Zhaoqing L, Wen S, Wei Q. Selective Laser Sintering Additive Manufacturing Technology: Elsevier; 2020.
    5. Hopkinson N, Erasenthiran P, editors. High Speed Sintering–Early Research into a New Rapid Manufacturing Process 312. 2004 International Solid Freeform Fabrication Symposium; 2004.
    6. Thomas HR, Hopkinson N, Erasenthiran P, editors. High speed sintering–continuing research into a new rapid manufacturing process. 2006 International Solid Freeform Fabrication Symposium; 2006.
    7. Chatham CA, Long TE, Williams CB. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Progress in Polymer Science. 2019;93:68-95.
    8. Kantor-Dyson L, Ellis A, Hopkinson N, editors. High Speed Sintering: The influence of print density on feature resolution and accuracy. NIP & Digital Fabrication Conference; 2014: Society for Imaging Science and Technology.
    9. Majewski CE, Hobbs B, Hopkinson N. Effect of bed temperature and infra-red lamp power on the mechanical properties of parts produced using high-speed sintering. Virtual and physical prototyping. 2007;2(2):103-10.
    10. Majewski CE, Oduye D, Thomas H, Hopkinson N. Effect of infra‐red power level on the sintering behaviour in the high speed sintering process. Rapid prototyping journal. 2008.
    11. 昱竑國際. 高速金屬 3D 列印系統: Desktop Metal. CAE Molding Magazine. 2020.
    12. 李侯慶. 多雷射模組3D列印機台設計開發與製程參數分析: 國立臺灣科技大學; 2020.
    13. Haken H. Laser theory. Light and Matter Ic/Licht und Materie Ic: Springer; 1970. p. 1-304.
    14. 林三寶. 雷射原理與應用: 全華圖書; 2008.
    15. Lawrence JR. Advances in laser materials processing: technology, research and applications: Woodhead Publishing; 2017.
    16. Li L. The advances and characteristics of high-power diode laser materials processing. Optics and lasers in engineering. 2000;34(4-6):231-53.
    17. Bergmann JP, Bielenin M, Stambke M, Feustel T, Witzendorff Pv, Hermsdorf J. Effects of diode laser superposition on pulsed laser welding of aluminum. Physics Procedia. 2013;41:180-9.
    18. Reinl S. Diode lasers used in plastic welding and selective laser soldering–applications and products. Physics Procedia. 2013;41:234-40.
    19. Incropera FP, DeWitt DP, Bergman TL, Lavine A. Principles of Heat and Mass Transfer: John Wiley & Sons Singapore Pte. Limited; 2013.
    20. 陳逸嘉. 半導體多雷射式模組應用於積層製造之系統開發: 國立臺灣科技大學; 2020.
    21. 宋育誠, 蘇信嘉, 張耀文, 林士廷. 高功率直驅式半導體雷射之發展. 機械工業雜誌. 2020(443):30-7.
    22. Chatham CA, Long TE, Williams CB. Powder bed fusion of poly (phenylene sulfide) at bed temperatures significantly below melting. Additive Manufacturing. 2019;28:506-16.
    23. Ajinjeru C, Kishore V, Liu P, Lindahl J, Hassen AA, Kunc V, et al. Determination of melt processing conditions for high performance amorphous thermoplastics for large format additive manufacturing. Additive Manufacturing. 2018;21:125-32.
    24. Ajinjeru C, Kishore V, Chen X, Lindahl J, Sudbury Z, Hassen A, et al. The influence of rheology on melt processing conditions of amorphous thermoplastics for big area additive manufacturing (BAAM). Solid Freeform Fabrication. 2016;2016:754-61.
    25. Osmanlic F, Wudy K, Laumer T, Schmidt M, Drummer D, Körner C. Modeling of laser beam absorption in a polymer powder bed. Polymers. 2018;10(7):784.
    26. Edgar J, Tint S. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Johnson Matthey Technology Review. 2015;59(3):193-8.
    27. Drummer D, Greiner S, Zhao M, Wudy KJAM. A novel approach for understanding laser sintering of polymers. 2019;27:379-88.
    28. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt RJCr. Polymers for 3D printing and customized additive manufacturing. 2017;117(15):10212-90.
    29. Serin G, Kahya M, Unver H, Gulec Y, Durlu N, Erogul O, editors. A review of additive manufacturing technologies. 17th International Conference on Machine Design And Production, Bursa, Turkey; 2016.
    30. Dastjerdi AA, Movahhedy MR, Akbari JJAM. Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts. 2017;18:285-94.

    無法下載圖示 全文公開日期 2026/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE