簡易檢索 / 詳目顯示

研究生: 王品程
Pin-Cheng Wang
論文名稱: 聚酰胺12粉末以碳黑披覆處理應用於半導體雷射燒熔積層製造
Polyamide 12 Powder Coated with Carbon Black for Semiconductor Laser Fusion Additive Manufacturing
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 林上智
Shang-Chih Lin
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 積層製造選擇性雷射燒結光反射率PA12碳黑
外文關鍵詞: Additive Manufacturing, Selective laser sintering, reflectivity, PA12, carbon black
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造中的粉末高分子材料使用製程有多噴射熔融(Multi Jet Fusion,MJF) ,選擇性雷射燒結(Selective Laser Sintering,SLS) ,黏著劑噴印技術(Binder Jetting,BJ)等,這種以粉末的列印製程,藉由施加光、電、熱等能量將粉床機構之粉末結合,可使用多種粉末材料成形。
    本研究討論如何利用碳黑披覆製程製備複合粉末材料改變列印性質。
    以半導體單雷射製程進行列印,在相同波長808nm 雷射比較不同粉末的光反射率、雷射能量密度與預熱溫度,在不同參數下列印的試片進行分析,比較其結果的差異。
    此研究應用於選擇性雷射燒結進行高分子材料之積層製造,分析碳黑披覆複合粉末對於波長808nm 雷射的結果,且使碳黑(碳粉)可均勻的披覆於粉末材料表面。針對碳黑比例、預熱溫度、雷射能量密度與碳黑披覆材料進行實驗,發現碳黑比例0.2wt%、預熱溫度173℃、能量密度0.0157 j/mm2、列印層厚 125 μm 與碳黑披覆製程下得到最佳列印性質,並比未進行碳黑披覆粉末材料反射率下降10.5%、機械性質增加28.8%。


    Additive manufacturing has its versatility not only for designing the intricate and complex geometries but also push the researchers to strive for materials that have improved mechanical properties as well as better printability. Different investigations and studies have been conducted to develop composite materials which can be fruitful for the application base printed parts by requiring less amount of energy to fuse layer by layer.
    Polymer-based materials in the form of powder are quite popular and used in many
    powders bed processes such as in MultiJet Fusion (MJF), Selective Laser Sintering (SLS), Binder Jetting (BJ), etc. These materials use light (UV or IR), thermal or other forms of energy to fuse these particles together during layer-by-layer deposition and resulted in the functional parts of required mechanical properties. So, it’s always a challenge for the researchers to use such materials which can absorb more energy and fused together quickly. The objective of this presented work is to discuss and analyze the thermal coating process that can be used to prepare composite powder to change/improve its mechanical properties. A single semiconductor laser process was used for printing different specimens with different parameters which showed good printability with each variation. The light reflectivity, laser energy density, and preheating temperature of different powders were compared with the same wavelength of 808nm laser. Carbon black can be uniformly coated on the surface of powder materials to improve the absorption of applied energy which enhances the layer fusion among the consecutive layers.
    Experiments were carried out by using the different proportions of carbon black with
    different preheating temperatures, laser energy densities, and thermal coating materials. By analyzing the different variations and combinations of parameters, it was found that the proportion of 0.2 wt. % of carbon black, the preheating temperature of 173℃, the energy density of 0.016 j/mm2, and the thickness of the printing layer of 125 μm gave the optimized parameters for the coating process. These also increased the reflectivity of the powder by 10.5% and improved the mechanical properties by 28.8%

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XII 第一章 、緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究流程 3 1.4 論文架構 4 第二章 、文獻回顧 5 2.1 積層製造 5 2.2 高分子積層製造技術 6 2.2.1 粉床熔融成形技術 8 2.2.2 多噴射熔融成型技術 10 2.2.3 選擇性雷射燒結 11 2.2.4 材料擠製 13 2.3 粉末製作方式 15 2.3.1 滾動混合 15 2.3.2 溶液混合 15 2.4 粉末燒結 16 2.4.1 固相燒結 16 2.4.2 液相燒結 17 2.4.3 完全熔融 18 第三章 、實驗方法 19 3.1 使用材料 19 3.1.1 高分子粉末材料PA12 19 3.1.2 添加劑 - 碳黑 20 3.2 PA12 基本性質測試 21 3.2.1 PA12粉末粒徑分析 22 3.2.2 PA12熱性質分析-TGA 24 3.2.3 PA12熱性質分析-DSC 26 3.2.4 傅立葉紅外線光譜儀測試 28 3.3 粉末材料製作設備 30 3.3.1 混鍊機 30 3.3.2 篩粉機 32 3.3.3 複合粉末製備 33 3.4 成形實驗設備 36 3.5 量測儀器設備 41 3.5.1 萬能試驗機 41 3.5.2 熱燈絲式電子顯微鏡 42 3.5.3 場發式電子顯微鏡 43 3.5.4 邵氏硬度計 44 第四章 實驗結果與討論 46 4.1 複合粉末性質分析 46 4.1.1 傅立葉紅外線光譜儀 46 4.1.2 複合粉末粒徑分析 49 4.1.3 熱重損失分析儀 52 4.1.4 差示掃描量熱法 53 4.1.5 傅立業紅外線光譜儀 55 4.2 預熱溫度之影響 56 4.3 混鍊對粉末之影響 60 4.3.1 表面均勻性之比較 60 4.3.2 拉伸強度比較 62 4.4 碳黑比例與雷射能量密度之影響 63 4.5 列印層厚之影響 69 4.6 自製粉末與商業粉末之比較 70 第五章 、結論 73 第六章 、未來展望 74 參考文獻 75

    [1] “HP 3D Printing – Leading The Commercial 3D Printing Revolution | HP® Official Site.” https://www.hp.com/us-en/printers/3d-printers.html (accessed Jun.22, 2022).
    [2] M.Galati, F.Calignano, S.Defanti, andL.Denti, “Disclosing the build-up mechanisms of multi jet fusion: Experimental insight into the characteristics of starting materials and finished parts,” J. Manuf. Process., vol. 57, pp. 244–253, Sep.2020, doi: 10.1016/J.JMAPRO.2020.06.029.
    [3] C. A.Chatham, T. E.Long, andC. B.Williams, “A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing,” Prog. Polym. Sci., vol. 93, pp. 68–95, Jun.2019, doi: 10.1016/J.PROGPOLYMSCI.2019.03.003.
    [4] B.Caulfield, P. E.McHugh, andS.Lohfeld, “Dependence of mechanical properties of polyamide components on build parameters in the SLS process,” J. Mater. Process. Technol., vol. 182, no. 1–3, pp. 477–488, Feb.2007, doi: 10.1016/J.JMATPROTEC.2006.09.007.
    [5] B.Yao, Z.Li, andF.Zhu, “Effect of powder recycling on anisotropic tensile properties of selective laser sintered PA2200 polyamide,” Eur. Polym. J., vol. 141, p. 110093, Dec.2020, doi: 10.1016/J.EURPOLYMJ.2020.110093.
    [6] M.Doshi, A.Mahale, S.Kumar Singh, andS.Deshmukh, “Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects,” Jan.2022, doi: 10.1016/J.MATPR.2021.10.003.
    [7] R.Wang, L.Xi, K.Ding, B.Gökce, S.Barcikowski, andD.Gu, “Powder preparation during ball milling and laser additive manufacturing of aluminum matrix nanocomposites: Powder properties, processability and mechanical property,” Adv. Powder Technol., vol. 33, no. 8, p. 103687, Aug.2022, doi: 10.1016/J.APT.2022.103687.
    [8] B.Chen et al., “Laser sintering of graphene nanoplatelets encapsulated polyamide powders,” Addit. Manuf., vol. 35, p. 101363, Oct.2020, doi: 10.1016/J.ADDMA.2020.101363.
    [9] “鄭正元 , ‘3D列印:積層製造技術與應用(第二版),’ 2021”.
    [10] Z.Xu, Y.Wang, D.Wu, K. P.Ananth, andJ.Bai, “The process and performance comparison of polyamide 12 manufactured by multi jet fusion and selective laser sintering,” J. Manuf. Process., vol. 47, pp. 419–426, Nov.2019, doi: 10.1016/J.JMAPRO.2019.07.014.
    [11] R. D.Goodridge, C. J.Tuck, andR. J. M.Hague, “Laser sintering of polyamides and other polymers,” Prog. Mater. Sci., Feb., doi: 10.1016/J.PMATSCI.2011.04.001.
    [12] S.Rosso, R.Meneghello, L.Biasetto, L.Grigolato, G.Concheri, andG.Savio, “In-depth comparison of polyamide 12 parts manufactured by Multi Jet Fusion and Selective Laser Sintering,” Addit. Manuf., vol. 36, p. 101713, Dec.2020, doi: 10.1016/J.ADDMA.2020.101713.
    [13] G.V.Salmoria, R. A.Paggi, A.Lago, andV. E.Beal, “Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering,” Polym. Test., vol. 30, no. 6, pp. 611–615, Sep.2011, doi: 10.1016/J.POLYMERTESTING.2011.04.007.
    [14] F.Lupone, E.Padovano, O.Ostrovskaya, A.Russo, andC.Badini, “Innovative approach to the development of conductive hybrid composites for Selective Laser Sintering,” Compos. Part A Appl. Sci. Manuf., vol. 147, p. 106429, Aug.2021, doi: 10.1016/J.COMPOSITESA.2021.106429.
    [15] K.Chen et al., “Experimental and modeling investigation on the viscoelastic-viscoplastic deformation of polyamide 12 printed by Multi Jet Fusion,” Int. J. Plast., vol. 143, p. 103029, Aug.2021, doi: 10.1016/J.IJPLAS.2021.103029.
    [16] B.Sagbas, B. E.Gümüş, Y.Kahraman, andD. P.Dowling, “Impact of print bed build location on the dimensional accuracy and surface quality of parts printed by multi jet fusion,” J. Manuf. Process., vol. 70, pp. 290–299, Oct.2021, doi: 10.1016/J.JMAPRO.2021.08.036.
    [17] S.Dadbakhsh, L.Verbelen, O.Verkinderen, D.Strobbe, P.VanPuyvelde, andJ. P.Kruth, “Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts,” Eur. Polym. J., vol. 92, pp. 250–262, Jul.2017, doi: 10.1016/J.EURPOLYMJ.2017.05.014.
    [18] D.Drummer, S.Greiner, M.Zhao, andK.Wudy, “A novel approach for understanding laser sintering of polymers,” Addit. Manuf., vol. 27, no. March, pp. 379–388, 2019, doi: 10.1016/j.addma.2019.03.012.
    [19] L.Benedetti, B.Brulé, N.Decreamer, K. E.Evans, andO.Ghita, “Shrinkage behaviour of semi-crystalline polymers in laser sintering: PEKK and PA12,” Mater. Des., vol. 181, p. 107906, Nov.2019, doi: 10.1016/J.MATDES.2019.107906.
    [20] R.Seltzer, F. M.dela Escalera, andJ.Segurado, “Effect of water conditioning on the fracture behavior of PA12 composites processed by selective laser sintering,” Mater. Sci. Eng. A, vol. 528, no. 22–23, pp. 6927–6933, Aug.2011, doi: 10.1016/J.MSEA.2011.05.045.
    [21] G.Flodberg, H.Pettersson, andL.Yang, “Pore analysis and mechanical performance of selective laser sintered objects,” Addit. Manuf., vol. 24, pp. 307–315, Dec.2018, doi: 10.1016/J.ADDMA.2018.10.001.
    [22] F.Calignano, F.Giuffrida, andM.Galati, “Effect of the build orientation on the mechanical performance of polymeric parts produced by multi jet fusion and selective laser sintering,” J. Manuf. Process., vol. 65, pp. 271–282, May2021, doi: 10.1016/J.JMAPRO.2021.03.018.

    無法下載圖示 全文公開日期 2027/07/26 (校內網路)
    全文公開日期 2027/07/26 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE