簡易檢索 / 詳目顯示

研究生: 李元備
Yuan-Bei Lee
論文名稱: 光陽極表面處理對染敏太陽能電池性能之探討
The influence of photoanode surface treatment on the performance of dye-sensitized solar cells
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳景翔
Ching-Hsiang Chen
吳季珍
Jih-Jen Wu
陳貞夙
Jen-Sue Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 太陽能電池表面處理單層石墨烯碳黑氧化鋅
外文關鍵詞: solar cell, surface treatment, single layer graphene, carbon black, znic oxide
相關次數: 點閱:295下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究主要以探討染料吸附後之光陽極在經過不同表面處理後,對於染敏太陽能電池的效能影響。在此光陽極以氧化鋅與二氧化鈦奈米結構為主;染料方面,則以D149與N719染料進行吸附;之後的表面處理則是以水分子與4-叔丁基吡啶分子進行之。由分析結果可知:當使用D149為染料時,水分子處理後具有提高光電轉換效能,主要是由於短路電流值增加所致;但若以N719為染料時,則以4-叔丁基吡啶分子處理可有效提高光電轉換效能。表面處理前後對於光陽極的影響,可藉由交流阻抗頻譜系統進行載子傳輸與傳遞機制的評估。在施加開路電壓條件下,可分析得知:表面處理主要在於提高電極與電解液介面處的傳遞阻值,顯示經過適當的表面處理可有效地降低載子複合機制發生,提高載子生命週期。此外,在本研究中同時探討以碳材取代白金做為對電極的評估。經過分析顯示:在使用碘離子隊的系統中,碳黑做為對電極的效果較佳,其轉換效率可達6.3%;但是,使用單層石墨烯的效果反而不佳。推測其可能之因在於所使用的電解液系統為碘離子對系統所致。不過,再經過部分氧化處理後,將其應用於對電極時,電池轉換效率可達5.8%。


    In this study, we investigated the effect of photoanodes on the dye-sensitized solar cells after different surface treatment. In this photoanode is zinc oxide and titanium dioxide nanostructure base. Dye, with D149 and N719 adsorption. The subsequent surface treatment was carried out with water molecules and 4-tert-butylpyridine molecules. From the results of the analysis: When using D149 as a dye, water molecules have improved photoelectric conversion efficiency, due to the increase of short-circuit current. If the N719 as a dye, 4-tert-butyl pyridine molecular treatment can effectively improve the photoelectric conversion efficiency. The influence of photoanode surface treatment can be evaluated by the carrier impedance transfer and transport system by electrochemical impedance spectroscopy. Under the condition of applying open circuit voltage, surface treatment is mainly to improve the transfer resistance at the interface between the electrode and the electrolyte, surface treatment can reduce the carrier recombination and improve the carrier life time. In addition, carbon material substitute was used as the counter electrode. After analysis: in the use of iodine ion system, the carbon black as a better effect on the electrode, the conversion efficiency is 6.3%. However, the use of single layer graphene is not good. Presumably it is due to the use of the electrolyte system for the iodine ion caused by the system. After oxidation, the conversion efficiency is 5.8%.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、 理論基礎與文獻回顧 3 2-1 染料敏化太陽能電池之結構組成1-3 3 2-1-1 透明導電玻璃(transparent conductive oxide,TCO) 4 2-1-2 光陽極電極(photoanode electrode) 4 A. 二氧化鈦(titanium oxide,TiO2)6 4 B. 氧化鋅(znic oxide,縮寫ZnO)12 6 2-1-3 敏化材料(sensitized material) 8 2-1-4 電解質(electrolyte)27-30 10 2-1-5 對電極(counter electrode) 11 A. 碳黑(carbon black,CB) 12 B. 石墨烯(graphene) 12 2-1-6 染料敏化太陽能電池之工作原理 15 2-2 光電流轉換效率(INCIDENT PHOTON-TO-ELECTRON CONVERSION EFFICIENCY,IPCE)65 17 2-3 電化學阻抗交流頻譜(ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY,EIS)67-68 18 第三章、 實驗方法與步驟 22 3-1 實驗流程圖 22 3-2 實驗藥品與儀器設備 23 3-2-1 藥品/耗材名稱 23 3-2-2 實驗設備 29 3-2-3 分析儀器 32 3-3 實驗步驟 40 3-3-1 基板清洗 (substrate cleaning)77 40 3-3-2 氧化鋅晶種層之製備 (ZnO seed layer preparation) 41 3-3-3 水熱法成長垂直型氧化鋅奈米柱 (growth of 1D ZnO nanostructure by hydrothermal method) 42 3-3-4 沉積氧化鋅奈米顆粒 (deposition of ZnO nanoparticle photoanode) 44 3-3-5 光敏化染料吸附 (dye-sensitized on ZnO-based photoanode) 44 3-3-6 表面處理 (surface treatment) 46 3-3-7 碳材對電極之製備(preparation of carbon based counter electrode) 48 第四章、 結果與討論 49 4-1 以金屬氧化物為光陽極進行染敏太陽能電池之研究 49 4-1-1 氧化鋅作為光陽極之染料敏化太陽能電池之研究 49 4-1-2 二氧化鈦作為光陽極之染料敏化太陽能電池之研究 51 4-2 金屬氧化物光陽極表面修飾對於染敏太陽能電池之影響 54 4-2-1 氧化鋅光陽極表面修飾之影響 54 4-2-2 二氧化鈦光陽極表面修飾之影響 60 4-3 以碳材為對電極進行染敏太陽能電池之研究 73 4-3-1 以循環伏安法分析碳材對電極 73 4-3-2 以EIS分析碳材對電極 77 4-3-3 以不同比例的CB與SLB混合製備之對電極所構成之染敏太陽能電池之性能分析 81 第五章、 結論 85 第六章、 參考文獻 86

    M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry, 164, 3, 2004.
    2. M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145, 2003.
    3. A. Hagfeldt; G. Boschloo; L. Sun; L. Kloo; H. Pettersson, Chemical Reviews, 110, 6595, 2010.
    4. S. A. Hassan; H. Afify; H. Zayed, Nanostructure Transparent Conducting Oxide Film, 2011.
    5. S. Major; S. Kumar; M. Bhatnagar; K. L. Chopra, Applied Physics Letters, 49, 1998.
    6. X. Chen; S. S. Mao, Chemical Reviews, 107, 2891, 2007.
    7. N.-G. Park; J. v. d. Lagemaat; A. J. Frank, The Journal of Physical Chemistry B, 104, 8989, 2000.
    8. E. Sa´nchez; T. Lo´pez; R. G. mez; Bokhimi; A. Morales; O. Novaro, Journal of Solid State Chemistry, 122, 309, 1996.
    9. K. Sugiyama; Y. Takéuchi, Zeitschrift für Kristallographie - Crystalline Materials, 1991.
    10. D. Reyes-Coronado; G. Rodr´ıguez-Gattorno; M. E. Espinosa-Pesqueira; C. Cab; R. d. Coss; G. Oskam, Nanotechnology, 19, 145605, 2008.
    11. S.-D. Mo; W. Y. Ching, Physical Review, 51, 13023, 1994.
    12. J. I. Lee; J. K. Kim, Applied Physics Letters, 90, 103107, 2007.
    13. D. C. Look; D. C. Reynolds; J. R. Sizelove; R. L. Jones; C. W. Litton; G. Cantwe; W. C. Harsch, Solid State Communications, 105, 399, 1998.
    14. X. Wang; J. Song; P. Li; J. H. Ryou; R. D. Dupuis; C. J. Summers; Z. L. Wang, Journal of the Americal Chemical Society, 127, 7920, 2005.
    15. Y. Sun; N. G. Ndifor-Angwafor; D. J. Riley; M. N. R. Ashfold, Chemical Physics Letters, 431, 352, 2006.
    16. L. Vayssieres, Advanced Materials, 15, 464, 2003.
    17. S.-W. Kim; S. Fujita, Applied Physics Letters, 86, 153119, 2005.
    18. J. J. Liu; M. H. Yu; W. L. Zhou, Applied Physics Letters, 87, 172505, 2005.
    19. J. Nelson, The physics of solar cells, 2003.
    20. NREL Reference Solar Spectral Irradiance:Air Mass 1.5.
    21. T. L. Bahers; T. Pauporté; G. Scalmani; C. Adamo; I. Ciofini, Physical Chemistry Chemical Physics, 11, 11276, 2009.
    22. A. Abbotto; F. Sauvage; C. Barolo; F. D. Angelis; S. F. de; M. Graetzel; N. Manfredi; C. Marinzi; M. K. Nazeeruddin, Dalton Transactions, 40, 234, 2011.
    23. L. W. Yu Zhao; H. R. Byon, Nature Communications, 4, 1896, 2013.
    24. M. Grätzel, Nature, 414, 338, 2001.
    25. D. Bera; L. Qian; T.-K. Tseng; P. H. Holloway, Materials, 3, 2260, 2010.
    26. D. H. Desilvestro; D. Y. Hebting Ruthenium-based dyes for Dye-sensitized Solar Cells.
    27. S. A. Sapp; C. M. Elliott; C. Contado; S. Caramori; C. A. Bignozzi, Journal of the American Chemical Society, 124, 11215, 2002.
    28. T. Daeneke; T.-H. Kwon; A. B. Holmes; N. W. Duffy; U. Bach; L. Spiccia, Nature Chemistry, 3, 211, 2011.
    29. T. W. Hamann; O. K. Farha; J. T. Hupp, The Journal of Physical Chemistry C, 112, 19756, 2008.
    30. J. N. Clifford; E. Palomares; M. K. Nazeeruddin; M. Gratzel; J. R. Durrant, The Journal of Physical Chemistry C, 111, 6561, 2007.
    31. P. Wang; S. M. Zakeeruddin; P. Comte; I. Exnar; M. Gra¨tzel, Journal of the Americal Chemical Society, 125, 1166, 2003.
    32. P. Wang; S. M. Zakeeruddin; I. Exnarb; M. Grätzel, Chemical Communications, 2972, 2002.
    33. R. Kawano; H. Matsui; C. Matsuyama; A. Sato; M. A. B. H. Susan; N. Tanabe; M. Watanabe, Journal of Photochemistry and Photobiology A: Chemistry, 164, 87, 2004.
    34. E. Stathatos; P. Lianos; U. Lavrencic-Stangar; B. Orel, Advanced Materials, 14, 354, 2002.
    35. P. Wang; S. M. Zakeeruddin; J. E. Moser; M. K. Nazeeruddin; T. Sekiguchi; M. Grätzel, Nature Materials, 2, 402, 2003.
    36. P. Balraju; P. Suresh; M. Kumar; M. S. Roy; G. D. Sharma, Journal of Photochemistry and Photobiology A: Chemistry 206, 53, 2009.
    37. S. Yu; S. Ahmadi; C. Sun; P. Palmgren; F. Hennies; M. Zuleta; M. Gothelid, The Journal of Physical Chemistry C, 114, 2315, 2010.
    38. T. Horiuchi; H. Miura; K. Sumioka; S. Uchida, Journal of the Americal Chemical Society, 126, 12218, 2004.
    39. M. J. Katz; M. J. D. Vermeer; O. K. Farha; M. J. Pellin; J. T. Hupp, The Journal of Physical Chemistry B, 119, 7162, 2015.
    40. K. Imoto; K. Takahashi; T. Yamaguchi; T. Komura; J. I. Nakamura; K. Murata, Solar Energy Materials & Solar Cells 79, 459, 2003.
    41. Z. Huang; X. Liu; K. Li; D. Li; Y. Luo; H. Li; W. Song; L. Chen; Q. Meng, Electrochemistry Communications, 9, 596, 2007.
    42. S. Stankovich; D. A. Dikin; G. H. B. Dommett; K. M. Kohlhaas; E. J. Zimney; E. A. Stach; R. D. Piner; S. T. Nguyen; R. S. Ruoff, Nature Letter, 442, 282, 2006.
    43. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, And Fullerenes, 1993.
    44. W. Hong; Y. Xu; G. Lu; C. Li; G. Shi, Electrochemistry Communications, 10, 1555, 2008.
    45. Q. Li; J. Wu; Q. Tang; Z. Lan; P. Li; J. Lin; L. Fan, Electrochemistry Communications, 10, 1299, 2008.
    46. J.-C. Huang, Advances in Polymer Technology, 21, 299, 2002.
    47. A. A. Balandin; S. Ghosh; W. Bao; I. Calizo; D. Teweldebrhan; F. Miao; C. N. Lau, Nano Letters, 8, 902, 2008.
    48. C. Lee; X. Wei; J. W. Kysar; J. Hone, Science, 321, 385, 2008.
    49. K. I. Bolotin; K. J. Sikes; Z. Jiang; M. Klima; G. Fudenberg; J. Hone; P. Kim; H. L. Stormer, Solid State Communications, 146, 351, 2008.
    50. A. C. Ferrari; J. C. Meyer; V. Scardaci; C. Casiraghi; M. Lazzeri; F. Mauri; S. Piscanec; D. Jiang; K. S. Novoselov; S. Roth; A. K. Geim, Physical Review Letters, 97, 187401, 2006.
    51. M. S. Dresselhaus; A. Jorio; M. Hofmann; G. Dresselhaus; R. Saito, Nano Letters, 10, 751, 2010.
    52. L. M. Malarda; M. A. Pimenta; G. Dresselhaus; M. S. Dresselhaus, Physics Reports, 473, 51, 2009.
    53. A. C. Ferrari, Solid State Communications, 143, 47, 2007.
    54. T. N. Murakami; S. Ito; Q. Wang; M. K. Nazeeruddin; T. Bessho; I. Cesar; P. Liska; R. Humphry-Baker; P. Comte; P. Péchy; M. Grätzel, Journal of the Electrochemical Society, 153, A2255, 2006.
    55. Y.-A. Leu; M.-H. Yeh; L.-Y. Lin; T.-J. Li; L.-Y. Chang; S.-Y. Shen; Y.-S. Li; G.-L. Chen; W.-H. Chiang; J.-J. Lin; K.-C. Ho, ACS Sustainable Chemistry and Engineering, 5, 537, 2017.
    56. S.-M. Jung; I. T. Choi; K. Lim; J. Ko; J. C. Kim; J.-J. Lee; M. J. Ju; H. K. Kim; J.-B. Baek, Chemistry of Materials, 26, 3586, 2014.
    57. C.-F. Lin; Y.-C. Chou; J.-F. Haung; P.-H. Chen; H.-C. Han; K.-Y. Chiu; Y. O. Su, Japanese Journal of Applied Physics, 55, 1, 2016.
    58. J. Ma; L. Zhou; C. Li; J. Yang; T. Meng; H. Zhou; M. Yang; F. Yu; J. Chen, Journal of Power Sources, 247, 999, 2014.
    59. Z. Gao; L. Wang; J. Chang; X. Liu; D. Wu; F. Xu; Y. Guo; K. Jiang, Electrochimica Acta, 188, 441, 2016.
    60. D. R. Cooper; B. D’Anjou; N. Ghattamaneni; B. Harack; M. Hilke; A. Horth; N. M. Massicotte; L. Vandsburger; E. Whiteway; V. Yu, ISRN Condensed Matter Physics, 2012, 56, 2012.
    61. I. a. V. E. Forum Cyclic Voltammetry.
    62. L. M. Peter, The Journal of Physical Chemistry C, 111, 6601, 2007.
    63. G. Boschloo; A. Hagfeldt, Accounts of Chemical Research, 42, 1819, 2009.
    64. L. Peter, Accounts of Chemical Research, 42, 1839, 2009.
    65. A. McEvoy; T. Markvart; L. Castaner; T. Markvart; L. Castaner, Practical Handbook of Photovoltaics: Fundamentals and Applications, 2003.
    66. F. So, Organic electronics: materials, processing, devices and applications, 2009.
    67. E. Barsoukov; J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2005.
    68. A. Bard; L. Faulkner; J. Leddy; C. Zoski, Electrochemical methods: fundamentals and applications, 1980.
    69. F. Fabregat-Santiago; J. Bisquert; G. Garcia-Belmonte; G. Boschloo; A. Hagfeldt, Solar Energy Materials & Solar Cells, 87, 117, 2005.
    70. K. Kalyanasundaram, 2010.
    71. A. B. F. Martinson; M. S. Goes; F. Fabregat-Santiago; J. Bisquert; M. J. Pellin; J. T. Hupp, The Journal of Physical Chemistry A, 113, 4015, 2009.
    72. J. Bisquert, The Journal of Physical Chemistry B, 106, 325, 2002.
    73. J. F. Rubinson; Y. P. Kayinamura, Chemical Society Reviews 38, 3339, 2009.
    74. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, 2013.
    75. D. B. Williams; C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2009.
    76. R. L. McCreery, Raman Spectroscopy for Chemical Analysis, 2005.
    77. K. A. Reinhardt; R. F. Reidy, Handbook for Cleaning for Semiconductor Manufacturing: Fundamentals and Applications, 2011.
    78. L. Vayssieres; K. Keis; S.-E. Lindquist; A. Hagfeldt, The Journal of Physical Chemistry B, 105, 3350, 2001.
    79. M. Law; L. E. Greene; J. C. Johnson; R. Saykally; P. Yang, Nature Materials, 4, 455, 2005.
    80. Y. Tak; D. Park; K. Yong, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 24, 2047, 2006.
    81. L.-Y. Chen; Y.-T. Yin, Crystal Growth Design, 12, 1055, 2012.
    82. M. K. Nazeeruddin; A. Kay; I. Rodicio; R. Humpbry-Baker; E. Miiller; P. Liska; N. Vlachopoulos; M. Gratzel, Journal of the American Chemical Society, 115, 6382, 1993.
    83. J. D. Roy-Mayhew; D. J. Bozym; C. Punckt; I. A. Aksay, ACS Nano, 4, 6203, 2010.

    無法下載圖示 全文公開日期 2020/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE