簡易檢索 / 詳目顯示

研究生: 徐睿明
Jui-ming Hsu
論文名稱: 利用次波長結構添加下轉換螢光粉製作複合型抗反射鏡片
Fabrication of Complex Anti-reflection Lens of Sub-Wavelength Structures with Down-conversion Phosphor
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 陳品銓
Pin-Chuan Chen
黃國政
Kuo-Cheng Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 188
中文關鍵詞: 太陽能電池下轉換螢光粉多孔質陽極氧化鋁次波長抗反射結構複合式光學元件
外文關鍵詞: Down-conversion phosphor, Porous anodic alumina(PAA), Sub-Wavelength Anti-Reflection Structure, Solar cell, Complex AR Lens
相關次數: 點閱:409下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用多孔質陽極氧化鋁(Porous Anodic Alumina, PAA)製程以4吋鍍鋁矽晶圓(Wafer Based Aluminum)為基板,製作柱狀、二階以及錐狀結構形貌之次波長結構(Sub Wavelength Structure,SWS)PAA模板,接著再以等效介質理論(Effective Medium Theory,EMT)之光學設計方法,估算反射率及穿透率值,另將PAA模板,透過反向模造製程(Reverse Mokding,RVM)在聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)材料上,製作出柱狀、二階以及錐狀結構之4吋抗反射鏡片(Anti-reflection Lens,AR Lens),經由光學量測結果,製作的AR Lens,穿透率皆高於Ref_PMMA,其中柱狀結構之AR Lens的穿透率為最高,於波長400nm~700nm區段可提升穿透率3.76%,可將太陽能電池之發電效率提升0.58%;另將下轉換螢光粉(Down-conversion phosphor)粉末加入PMMA材料上,以柱狀結構之PAA模板為基板,再以反向模造製作出複合型光學元件(Complex Anti-reflection Lens,CARL),得到大徑92nm、間距121nm、高度為300nm、間距121nm之次波長抗反射結構,可將太陽能電池之發電效率提升0.67%,此研究成果未來可應用於太陽能電池模組產業。


    This study is to develop a fabrication process of sub-wavelength structure anti-reflection(SWS-AR) structures on PMMA combined with phosphor wafer based porus anodic alumina (PAA) template and replicated by reverse molding (RVM) method. The effective medium theory (EMT) have been applied to obtain theoretical design values of reflection rate (R%) and transmittance rate(T%) for specified AR film. The PAA process has been developed to fabricate three gradient index anti-reflection structures including columnar step and taper on 4-inch wafer based aluminum layers. The PAA template are used as a mold plate for RVM of PMMA combibed whth phosphor to produce the desired SWS-AR lens. The spectrophotometer instruments have been used to investigate the properties of AR Lens. Results show that the columnar structure of SWS-AR can increase the transmittance by 3.76% as compared with non-structured PMMA film. In the measurement of the efficiency of solar cell, the columnar structure of AR Lens can increase the efficiency by 0.58% as compared with non-structure PMMA film.Then the columnar structure of PAA template is used as a mold plate for RVM of the composite material of down conversion phosphor and PMMA to produce the Complex Anti-reflective Lens(CARL) to produce sub-wavelength structure with 92nm outer diameter and 121nm pitch and 300nm height. The CARL can increase the efficiency of solar cell by 0.67% as compared with that of original solar cell. Future study can focus on integrated application.

    中文摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 X 表目錄 XIX 符號表 XXII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的與方法 5 1.4 章節介紹 10 第二章 文獻回顧 12 2.1陽極氧化鋁相關文獻回顧 12 2.1.1 多孔質陽極氧化鋁孔洞生成原理回顧 12 2.12 多孔質陽極氧化鋁製程應用回顧 23 2.2次波長抗反射結構相關文獻 32 2.3 螢光轉換材料相關文獻 37 第三章 次波長抗反射光學原理 43 3.1 光的基本現象與特性 43 3.1.1電磁波的產生與電磁波頻譜 43 3.1.2電磁波的產生與電磁波頻譜 45 3.1.3 光的傳播 48 3.1.4 抗反射薄膜干涉理論 52 3.1.5 多層膜干涉法 53 3.1.6 漸進式折射率法 (Gradient Index) 56 3.1.8次波長結構設計 58 3.1.8 等效介質理論與非均質層理論 60 3.2 抗反射結構光學設計流程 63 3.2.1 實驗結果分類說明 63 3.2.2 光學設計流程說明 66 3.3 抗反射結構光學分析與設計 68 3.3.1 OD_SWS流程 69 3.3.2 SWS_Analysis流程 73 第四章 螢光轉換材料理論及製備 82 4.1 螢光粉材料簡介 82 4.2以螢光材料的分類 83 4.2.1 以螢光材料發光物性分類 83 4.2.2 以螢光特性分類 85 4.2.3 以激發源種類及其應用特性分類 86 4.3發光機制簡介 87 4.3.1基態與激發態導論 87 4.3.2激發態的產生 88 4.3.3單重態與三重態 90 4.3.4激發態的失活(Excited state deactivation) 92 4.3.5螢光與磷光 95 4.4 上下轉換螢光粉簡介 97 4.4.1史托克位移(Stokes Shift) 97 4.4.2 上轉換發光 100 4.5下轉換螢光粉製備 101 第五章 實驗規劃與設備 104 5.1 實驗流程規劃 104 5.2 實驗材料與設備規劃 106 5.2.1實驗材料 106 5.2.1實驗設備 109 5.3 4吋鍍鋁矽晶圓模板製作規劃 113 5.4 複合材料製程規劃 117 5.5 反向模造製程(REVERSE MOLDING, RVM Ⅱ) 120 第六章 實驗結果與討論 125 6.1 基材鋁膜檢測 125 6.1.1 晶體結構觀察 125 6.2 4吋鍍鋁矽晶圓PAA模板製程 127 6.3 反向模造成品 133 6.4 4吋複合型抗反射鏡片製程 137 6.5 太陽能發電效率量測 140 6.5.1 太陽能發效率量測 140 6.5.2 複合型AR Lens太陽能電池發電效率量測 148 6.5.3 Silicon base 30℃~60 ℃太陽能發電效率影響 150 6.5.4 Silicon base 照射20分鐘太陽能發電效率影響 157 6.6穿透率量測 160 6.7接觸角量測 165 6.8 結果與討論 169 6.8.1多孔質陽極氧化鋁製程 169 6.8.2 AR Lens光學特性與接觸角量測 170 6.8.3 複合型AR Lens製程 172 6.8.4太陽能發電效率量測 173 6.8.5光學設計與AR Lens之比較 175 第七章 結論與建議 177 7.1 結論 177 7.2 建議 181 參考文獻 183 作者簡介 188

    [1] H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” National Renewable Energy Laboratory,1999.
    [2] 陳建志,” 鍍鋁矽晶圓之多孔質陽極氧化鋁結構製作大面積抗反射結構製程研究”,國立台灣科技大學機械工程研究所,2010.
    [3] F. Keller and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of the Electrochemical Society, vol.100, pp.11–419, 1953.
    [4] J. P. O'Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminum,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, 1970.
    [5] G. E.Thompson and G. C.Wood, “Process anodic film formation on aluminum, ” passive films,” Nature, Vol.290, pp.230-232, 1981.
    [6] G. E.Thompson and G. C.Wood, “Corrosion: Aqueous Process and passive films,” Treaties on Materials Science and Technology, Academic Press Inc.(London)Ltd., Vol.23, Chap.5, pp.206, 1983.
    [7] V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide 1 growth on aluminum,” Applied Physics Letters .Vol25, pp1258-1263,1992.
    [8] Hideki Masuba and Kenji Fukuda ,“Order meteal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, Vol268, pp1466-1468,1995.
    [9] O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Applied Physics Letters, Vol.72, pp.1173-1175, 1998.
    [10] A.P. Li, A. Birner, K. Nielsch, and U. Go‥sele, “Polycrystalline nanopore arrays with hexagonal ordering on aluminum” The Journal of Vacuum Science and Technology A, Vol.17, pp.1428-1431, 1999.
    [11] N-Q. Zhao, X-X. Jiang, C-S. Shi, J-J. Li, Z-G. Zhao and X-W. Du, “Effects of anodizing conditions on anodic alumina structure,” Journal of Materials Science, Vol.42, pp.3878–3882, 2007.
    [12] Y-L. Wang, N-W. Liu, C-Y. Liu, H-H. Wang, “Focused-Ion-Beam-Based Selective Closing and Opening of Anodic Alumina Nanochannels for the Growth of Nanowire Arrays Comprising Multiple Elements,” Adv. Mater. 20, 2547-2551, 2008.
    [13] Mickael Lillo, Dusan Losic*, “Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology ,” Journal of Membrane Science 327 ,11-17, 2009.
    [14] H. Masuda, H. Yamada “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, Vol. 71, No. 19, 10 1997.
    [15] H. Masuda, H. Asoh, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater, Vol.13, NO.3, 2001.
    [16] Yoshitaka Matsui, Kazuyuki Nishio and Hideki Masuda, “Highly Ordered Anodic Porous Alumina by Imprinting Using Ni Molds Prepared from Ordered Array of polystyrene Particles, ”Japanese Journal of Applied physics, Vol.44,pp.7726-7728,2005.
    [17] Kazuyuki Nishio, Takashi Yoshitaka, Sho Hatakeyama, Hideki Maegawa, Hideki Masuda, “Fabrication of ideally ordered anodic porous alumina with large area by vacuum deposition of Al onto mold, ”The Journal of Vacuum Science and Technology B, Vol.26, pp.L10-L12,2008.
    [18] Takashi Yanagishita, Kazuyuki Nishio, and Hideki Masuda
    , “Anti-Reflection Structures on Lenses by Nanoimprinting
    Using Ordered Anodic Porous Alumina ,” Applied Physics Express 2 , 022001, 2009.
    [19] 何光朗,”次微米陽極氧化鋁孔洞製作光學元件之研究”國立台灣科技大學機械工程研究所,2008.
    [20] Yongxing Hu, Jianping Ge and Yadong Yin*, “PDMS rubber as a single-source precursor for templated growth of silica nanotubes ,” The Royal Society of Chemistry , 914-916, 2009.
    [21] 詹景翔,”多孔質陽極氧化鋁模板製作似蟬翼抗反射結構”,國立台灣科技大學機械工程研究所,2009.
    [22] CC. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor, Vol.26, pp.79–84, 1967.
    [23] G.S. Watson, J.A. Watson, “Natural nano-structure on insercts possible functions of ordered arrays characterized by atomic force microscopy, ”Applied Surface Science, Vol.235,pp.139-144,2004.
    [24] Ting, C. J, Huang, M. C., Tsai, H. Y., Chou, C. P, and Fu, C. C., “ Low Cost Fabrication of the Large-Area Anti-Reflection Films from Polymer by Nanoimprint/Hot-embossing Technology, ” Nanotechnology, Vol. 19, No. 20, 2008
    [25] Chia-Jen Ting, Fuh-Yu Chang, C.F. Chen* and C. P. Chou, 2008, “Fabrication of an antireflective polymer optical film with subwavelength structures using roll-to-roll micro-replication process,” Journal of Micromechanics and Microengineering, Vol. 18, pp. 1-9,2008
    [26] P.Gibart, F.Auzel, J.C. Guillaume, and K. Zahraman, “Below bandgap IR response of substrate-free GaAs solar cells using two-photon upconversion,” Jpn. J. Appl. Phys. 1, Regul. Rap. Short Notes, 35 [8] 4401–4402 ,1996
    [27] H. J. Kim*, J. S. Song, and S. S. Kim, “Efficiency Enhancement of Solar Cell by Down-Conversion Effect of Eu3+ Doped LiGdF4 ,” Journal of the Korean Physical Society, Vol. 45, No. 3, September 2004, pp. 609_613,2004
    [28] A. Shalav, B.S. Richards, K.W. Krämer, and H.U. Güdel,“Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett., 86 [1] 013505 (2005)
    [29] P. Chung, H.H. Chung, and P.H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A, 25 [1] 61-66 (2007)
    [30] 趙凱華,鍾錫華,“光學”,儒林圖書有限公司,1992.
    [31] 徐敘瑢,陳憲偉,“光電材料與顯示技術”,五南圖書出版公司,2004.
    [32] 葉玉堂,“幾合光電”,五南圖書出版股份有限公司,2008.
    [33] 國家科學研究院儀器科技研究中心,“光電元件精密製造與檢測”,全華圖書股份有限公司,2007.
    [34] 林明顯,“太陽能電池技術入門”,全華圖書股份有限公司,2009.
    [35] Daniel H. Raguin and G. Michael Morris, “Antireflection structured surfaces for the infrared spectral region,” APPLIED OPTICS , Vol.32, No. 7, 1993.
    [36] J.C.Maxwell Garnett, “Colours in metal glasses and metallic films,” Philos. Trans., R Soc. London 203,385, 1904.
    [37] J.E.Yang, “The Application and Investigation of Luminescence Materials in Electronic Industry ”,Technical Report of ITRI, Hsinchu, Taiwan, 1992,p.50.
    [38] S.C.Tu, “The Structure and Property of Crystal”,Bouhaitang Co. , Taiwan,1987,p.326
    [39] S.Cotton, “Lanthanides and Actinides”,Macmillan, London, 1990, p.191
    [40] 曹移,張建成,“光化學技術”,新文京開發出版股份有限公司,2006.
    [41] 徐敘瑢,“光電材料與顯示技術”,五南圖書出版股份有限公司,2004.
    [42] 劉如熹,紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華圖書股份有限公司,2005.
    [43] 陳宏昱,”大尺寸次波長抗反射結構 ”,國立台灣科技大學機械工程研究所,2009.
    [44] Robert N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water,” 28, 988-994, 1936.
    [45] De Gennes, Pierre-Gille, ”Capillarity and Wetting Phenomena,” 2004.
    [46] 邱士峰、周正堂,”低表面能材料於超疏水表面製備與奈米壓印微影技術之應用”,國立中央大學化學工程與材料工程研究所,2005.

    QR CODE