簡易檢索 / 詳目顯示

研究生: 曾懷萱
Huai-Hsuan Tseng
論文名稱: 應用於光獵能系統之自啟動單電感升降壓轉換器
A Self-Startup Single-Inductor Buck-Boost Converter for Light-Harvesting
指導教授: 陳伯奇
Po-Ki Chen
口試委員: 陳伯奇
Po-Ki Chen
鍾勇輝
Yung-Hui Chung
盧志文
Chih-Wen Lu
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 119
中文關鍵詞: CMOS正面照光陽能電池低電壓啟動切換式升降壓型轉換器獵能技術
外文關鍵詞: CMOS Front-Illuminated Solar cell, Low Voltage Startup, DC-DC Buck/Boost Converter, Energy Harvesting
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出應用於光獵能系統之自啟動單電感升降壓轉換器,利用CMOS太陽能電池收集能量,經過電源管理單元,為感測器提供穩定的電源。由於CMOS太陽能電池所能提供之電壓極低,而為了解決在低電壓下無法正常啟動電源管理單元之問題,本論文提出一啟動電路架構,由環形振盪器(Ring Oscillator)、非重疊電路(Non-Overlapping)、電荷幫浦(Charge Pump)、時脈產生器(Clock Generator)及電壓偵測器(Voltage Detector)所組成,針對電源管理單元在低電壓之條件下仍可啟動,並加入模式切換電路,於電源管理單元正常運作後將啟動電路關閉以降低整體電路之功率消耗,維持高能量轉換效率,且在輸出電壓過低時能夠重新開啟啟動電路,使電源管理單元得以持續正常運作。
    應用於光獵能系統之自啟動單電感升降壓轉換器使用TSMC 0.18μm CMOS標準製程實現,整體晶片佈局面積為1.08749×1.408 mm2 (含I/O pads),其輸入電壓為0V~0.55V,後模擬結果顯示,輸出電壓可藉由內建之超低功耗電壓參考電路穩定在1V,而輸出負載電流範圍坐落於0.001~1mA,其中在負載電流為1mA時,可達最高能量轉換效率94.3%。


    In this thesis, a self startup buck/boost converter applied to solar energy harvesting system is introduced to supply power to IoT sensor node. Since the voltage provided by CMOS solar cells is extremely low, to solve the problem that the power management unit can’t be started normally under low voltage, a startup architecture is proposed for help. The startup circuit composed of ring oscillator, non-overlapping circuit, charge pump, clock generator and voltage detector. It also processes a mode switching architecture which can not only turned off the startup circuit after the DC-DC converter operates normally to reduce the power consumption but also restart the startup circuit when the output voltage becomes too low so that to push back the power management unit to normal operation.
    The self-startup single-inductor buck/boost converter for light-harvesting is designed with a TSMC’s 0.18μm standard CMOS process. The overall chip area is 1.08749×1.408 mm2 (including I/O pads) and its input voltage range is 0V – 0.55V. The post layout simulation results have shown the output voltage can be stabilized at 1V successfully. The proposed converter is designed to provide 0.001 – 1mA output current to supply enough energy to the load and the peak conversion efficiency is 94.3% at 1mA load current.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1-1 研究動機 1-2 論文架構 第二章 太陽能電池與最大功率追蹤介紹 2-1 太陽能電池 2-1-1 半導體光學特性 2-1-2 太陽能電池基本原理 2-1-3 太陽能電池等效電路 2-1-4 太陽能電池重要參數 2-2 最大功率追蹤演算法介紹 2-2-1 擾動觀察法 2-2-2 增量電導法 2-2-3 開路電壓法 2-2-4 短路電流法 2-2-5 模糊邏輯控制法 2-2-6 類神經網路法 第三章 切換式直流至直流轉換器介紹 3-1 功率級 3-1-1 連續導通模式 3-1-2 邊界導通模式 3-1-3 不連續導通模式 3-2 控制級 3-2-1 電壓模式控制 3-2-2 電流模式控制 3-2-3 漣波控制 3-2-4 自適性導通時間控制技術 3-3 效率考量 3-3-1 傳導損失 3-3-2 切換損失 3-3-3 驅動損失 3-4 切換式直流至直流轉換器特性 3-4-1 負載調節率 3-4-2 線性調節率 3-4-3 負載暫態響應 3-4-4 輸出電壓漣波 3-4-5 能量轉換效率 第四章 設計與實現 4-1 應用於光獵能系統電源管理晶片設計 4-1-1 設計標的 4-1-2 整體架構介紹 4-1-3 啟動電路 4-1-4 自適性導通時間控制器 4-1-5 具休眠機制零電流偵測 4-1-6 比較器 4-1-7 最大功率追蹤電路 4-1-8 非重疊時脈產生電路、位準移位器與驅動電路 4-1-9 模式控制電路 4-1-10 超低功耗電壓參考電路 4-1-11 防震盪電路 第五章 模擬結果 5-1 模擬環境考量 5-2 直流至直流轉換器模擬結果 5-2-1 子區塊模擬 5-2-2 穩態操作模擬 5-2-3 暫態響應模擬 5-2-4 轉換效率 5-3 電路佈局圖 5-4 量測考量 第六章 結論與未來展望 6-1 結論 6-2 效能比較 6-3 未來展望 參考文獻

    [1] IoT Analytics. IoT 2020 in Review: The 10 Most Relevant IoT Developments of the Year. (2021). Available: https://iot-analytics.com/iot-2020-in-review/
    [2] ASVDA. 掌握智慧物聯全球商機 產業創新躍升國際舞台. (2021). Available: https://www.asvda.org/chi/news/news_content.aspx?nid=448D18E91F4EDC9A
    [3] 行政院環境保護署. 認識空污感測物聯網. Available: https://airtw.epa.gov.tw/CHT/Encyclopedia/AirSensor/AirSensor_2.aspx
    [4] 智慧農業. 無所不在的連結-智慧農業物聯網技術與應用. Available: https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0K303431216608203659&sid=0K311348165828914970
    [5] Chinese Classroom-aid. (2020). 可穿戴式裝置與醫療產業交集的商機起飛. Available: https://chinese.classroom-aid.com/2020/08/可穿戴裝置與醫療產業交集的商機起飛.html/
    [6] Green, Martin A., et al. "Solar cell efficiency tables (Version 55)," Progress in Photovoltaics: Research and Applications, vol. 28, no.1, pp. 3-15, 2020.
    [7] R. D. Prabha and G. A. Rincón-Mora, "Drawing the Most Power From Low-Cost Single-Well 1-mm2 CMOS Photovoltaic Cells," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 1, pp. 46-50, Jan. 2017.
    [8] Sze, Simon M., Yiming Li, and Kwok K. Ng, Physics of semiconductor devices, 2021.
    [9] Adel S. Sedra, and Kenneth C. Smith, Microelectronic Circuits 7/e,2016.
    [10] Mishra, Umesh, and Jasprit Singh, Semiconductor device physics and design,2007.
    [11] A.Khaligh and O. C. Onar, Energy harvesting: solar, wind, and ocean energy conversion system, 2010.
    [12] Boualem Bendib, Hocine Belmili, Fateh Krim, "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renewable and Sustainable Energy Reviews, Vol. 45, pp. 637-648, 2015.
    [13] A. K. Abdelsalam, A. M. Massoud, S. Ahmed and P. N. Enjeti, "High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids," IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1010-1021, April 2011.
    [14] Nasir Hussein Selman , Jawad Radhi Mahmood "Comparison Between Perturb & Observe, Incremental Conductance and Fuzzy LogicMPPT Techniques at Different Weather Conditions," International Journal of Innovative Research in Science,Engineering and Technology, Vol. 5, Issue 7, July 2016.
    [15] T. -W. Hsu, H. -H. Wu, D. -L. Tsai and C. -L. Wei, "Photovoltaic Energy Harvester With Fractional Open-Circuit Voltage Based Maximum Power Point Tracking Circuit," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 257-261, Feb. 2019.
    [16] S. Yuvarajan and Shanguang Xu, "Photo-voltaic power converter with a simple maximum-power-point-tracker," Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03., 2003.
    [17] Driankov, Dimiter, Hans Hellendoorn, and Michael Reinfrank. An introduction to fuzzy control. 2013.
    [18] N. Khaehintung and P. Sirisuk, "Implementation of maximum power point tracking using fuzzy logic controller for solar-powered light-flasher applications," The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04., 2004, pp. iii-171.
    [19] T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," in IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, June 2007.
    [20] 梁適安, 交換式電源供給器之理論與實務設計, 二版 , 2008.
    [21] K.-H. Chen, Power Management Techniques for Integrated Circuit Design, 2016, pp. 10,520.
    [22] R. W. Erickson, D. Maksimovic, and SpringerLink, Fundamentals of power electronics [electronic resource], 2nd ed. Norwell, Mass.: Kluwer Academic, 2004, pp. xxi, 883 p.
    [23] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang and I. Batarseh, "Analysis and Design of Voltage Regulator With Adaptive FET Modulation Scheme and Improved Efficiency," in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, March 2008.
    [24] O. Lopez-Santos L. Martinez-Salamero G. Garcia H. Valderrama-Blavi and D.O. Mercuri "Efficiency analysis of a sliding-mode controlled quadratic boost converter" IET Power Electron. vol. 6 no. 2 pp. 364-373 Feb. 2013.
    [25] B. Razavi, Design of analog CMOS integrated circuits, Second ed. New York, NY: McGraw‐Hill Education, 2016, pp. xviii, 782 pages.
    [26] 吳義利, 切換式電源轉換器 原理與實用設計技術(實例設計導向), 三版, 2018.
    [27] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang and I. Batarseh, "Analysis and Design of Voltage Regulator With Adaptive FET Modulation Scheme and Improved Efficiency," in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, March 2008.
    [28] E. J. Carlson, K. Strunz and B. P. Otis, "A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 741-750, April 2010.
    [29] Y. K. Ramadass and A. P. Chandrakasan, "A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage," in IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 333-341, Jan. 2011.
    [30] P. Weng, H. Tang, P. Ku and L. Lu, "50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting," in IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, April 2013.
    [31] Po-Hung Chen et al., "0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS," IEEE Custom Integrated Circuits Conference 2010, 2010, pp. 1-4.
    [32] J. F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," in IEEE Journal of Solid-State Circuits, vol. 11, no. 3, pp. 374-378, June 1976.
    [33] R. Pelliconi, D. Iezzi, A. Baroni, M. Pasotti and P. L. Rolandi, "Power efficient charge pump in deep submicron standard CMOS technology," Proceedings of the 27th European Solid-State Circuits Conference, 2001.
    [34] P. Chen et al., "A 95mV-startup step-up converter with Vth-tuned oscillator by fixed-charge programming and capacitor pass-on scheme," 2011 IEEE International Solid-State Circuits Conference, 2011.
    [35] Yuan Gao, Shenglei Wang, Haiqi Li, Leicheng Chen, Shiquan Fan and Li Geng, "A novel zero-current-detector for DCM operation in synchronous converter," 2012 IEEE International Symposium on Industrial Electronics, 2012, pp. 99-104.
    [36] H. Wu, C. Wei, Y. Hsu and R. B. Darling, "Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter With a Near-Threshold Startup Voltage and High Efficiency," in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1956-1965, April 2015.
    [37] P. E. Allen and D. R. Holberg, CMOS analog circuit design, 3rd ed. New York ; Oxford: Oxford University Press USA, 2012, pp. xvi, 757 p.
    [38] A. C. de Oliveira, D. Cordova, H. Klimach and S. Bampi, "Picowatt, 0.45–0.6 V Self-Biased Subthreshold CMOS Voltage Reference," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 12, pp. 3036-3046, Dec. 2017.
    [39] L. Magnelli, F. Crupi, P. Corsonello, C. Pace and G. Iannaccone, "A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference," in IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 465-474, Feb. 2011.
    [40] R. Damodaran Prabha and G. A. Rincón-Mora, "0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System," in IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2950-2958, April 2016.
    [41] 賴秀全, "應用在802.11a 及WIMAX/UWB 之低雜訊放大器晶片設計," 碩士, 積體電路設計研究所, 國立彰化師範大學, 彰化縣, 2008.
    [42] H. Kim, J. Maeng, I. Park, J. Jeon, D. Lim and C. Kim, "A 90.2% Peak Efficiency Multi-Input Single-Inductor Multi-Output Energy Harvesting Interface With Double-Conversion Rejection Technique and Buck-Based Dual-Conversion Mode," in IEEE Journal of Solid-State Circuits, vol. 56, no. 3, pp. 961-971, March 2021.
    [43] G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, "A 400 nW Single-Inductor Dual-Input–Tri-Output DC–DC Buck–Boost Converter With Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting," IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2758-2772, 2015.
    [44] C.-W. Liu, H.-H. Lee, P.-C. Liao, Y.-L. Chen, M.-J. Chung, and P.-H. Chen, "Dual-Source Energy-Harvesting Interface With Cycle-by-Cycle Source Tracking and Adaptive Peak-Inductor-Current Control," IEEE Journal of Solid-State Circuits, vol. 53, no. 10, pp. 2741-2750, 2018.
    [45] Y. -S. Noh et al., "17.6 A Reconfigurable DC-DC Converter for Maximum TEG Energy Harvesting in a Battery-Powered Wireless Sensor Node," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 266-268.

    無法下載圖示 全文公開日期 2026/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE