簡易檢索 / 詳目顯示

研究生: 王奕傑
Yi-Chieh Wang
論文名稱: 銫鉛溴鈣鈦礦量子點的添加對於2D/3D鈣鈦礦太陽能電池效能之影響
The Impact of Cesium Lead Bromide Perovskite Quantum Dot Incorporation on the Performance of 2D/3D Perovskite Solar Cells
指導教授: 陳良益
Liang-Yih Chen
口試委員: 李坤穆
Kun-Mu Lee
蘇子森
Tzu-Sen Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 156
中文關鍵詞: 甲脒碘化鉛鈣鈦礦量子點2D/3D結構穩定性
外文關鍵詞: formamidine lead iodide (FAPbI3) perovskite, quantum dots, 2D/3D hybrid, stability
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用N-甲基吡咯烷酮代替二甲基亞碸來製備甲脒碘化鉛鈣鈦礦薄膜。這項研究結果表明,使用N-甲基吡咯烷酮作為製備甲脒碘化鉛鈣鈦礦薄膜的輔助溶劑可以有效改善地消除製作時產生裂痕的問題,以改善鈣鈦礦太陽能電池的性能。同時,利用部份置換A位陽離子與X位陰離子可以提升元件開路電壓與穩定性。除此之外,在本研究中擬藉由添加溴化銫鉛量子點做為異質核點來增大甲脒碘化鉛鈣鈦礦晶粒。透過掠角式X光繞射圖譜分析可知鈣鈦礦平均晶粒由24.4 奈米增大至40.3 奈米,因此平均開環電壓由1.01 V提升至1.07 V。我們更進一步使用苯乙胺氫碘酸於甲脒碘化鉛鈣鈦礦層表面形成2D/3D混合結構探討對甲脒碘化鉛鈣鈦礦太陽能電池效能的影響。可知2D/3D混合結構構成了交錯能帶對位關係,使光生電子與電洞能有效地分離,從而提高了太陽能電池的短路電流、開環電壓、填充因子與轉換效率等關鍵參數。在本研究中的最佳太陽能電池表現為:短路電流密度為23.61 mA/cm2,開環電壓值為1.09 V,填充因子為0.76,轉換效率達19.58%。此外,透過苯乙胺氫碘酸鹽界面修可使甲脒碘化鉛鈣鈦礦層具有更好的疏水性。經過穩定性測試,經由苯乙胺氫碘酸鹽修飾的太陽能電池表現出色的穩定性。在150小時內元件能夠維持接近70%的初始效率。


    This study aimed to use N-methyl-2-pyrrolidone (NMP) as a replacement for dimethyl sulfoxide (DMSO) in the preparation of formamidine lead iodide (FAPbI3) perovskite films. The results of this research indicate that using NMP as an good auxiliary solvent for the preparation of FAPbI3 perovskite films effectively eliminates the issue of crack formation during fabrication, thus improving the performance of perovskite solar cells. Additionally, partial substitution of A-site cations and X-site anions enhances the open-circuit voltage and stability of the devices. Furthermore, in this study, cesium lead bromide quantum dots (CsPbBr3 QDs) were added as heterogeneous nucleation sites to increase the grain size of FAPbI3 perovskite. Grazing incidence X-ray diffraction analysis revealed that the average grain size of FAPbI3 perovskite increased from 24.4 nm to 40.3 nm, resulting in an improvement in the average open-circuit voltage from 1.01 V to 1.07 V. Moreover, a 2D/3D hybrid structure was formed on the surface of the FAPbI3 perovskite layer using phenethylammonium iodide (PEAI), and its impact on the performance of perovskite solar cells was investigated. Band structure analysis revealed that the 2D/3D hybrid structure formed a staggered band alignment, effectively separating photogenerated electrons and holes, thereby enhancing key parameters such as short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency () of the solar cells. The best-performing solar cell in this study achieved a JSC of 23.61 mA/cm², a VOC of 1.09 V, a FF of 0.76, and a  of 19.58%. Additionally, PEAI interface modification resulted in improved hydrophobicity of the FAPbI3 perovskite layer. Stability testing showed excellent stability of the solar cells modified with PEAI, with the devices maintaining nearly 70% of their initial efficiency over 150 hours.

    中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章、緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章、理論基礎與回顧 5 2-1太陽能電池 5 2-1-1半導體基本性質 5 2-1-2太陽能電池基本原理 9 2-2鈣鈦礦材料 12 2-2-1鈣鈦礦結構 12 2-2-2鈣鈦礦太陽能電池發展 15 2-3 FAPbI3鈣鈦礦材料性質 18 2-3-1 FAPbI3結構與基本特性 18 2-3-2路易斯酸鹼對FAPbI3薄膜之影響 24 2-4 熵增理論穩定α-FAPbI3鈣鈦礦 29 2-4-1 A位陽離子的改變 29 2-4-2 X位陰離子的改變 32 2-5鈣鈦礦太陽能電池的優化以及近期研究 34 2-5-1添加工程(Additive engineering) 34 2-5-2界面工程(Interfacial engineering) 38 2-5-3近期鈣鈦礦太陽能電池文獻效率整理 44 第三章、實驗設計 45 3-1 實驗流程圖 45 3-2 實驗藥品 46 3-3 實驗設備與分析儀器 50 3-3-1實驗設備 50 3-3-2 紫外光-可見光光譜儀(UV/visible spectrophotometer) 52 3-3-3 X光繞射分析儀(X-ray diffraction,XRD) 53 3-3-4 時間解析光致發光測量系統(time-resolved photoluminescence,TRPL) 54 3-3-5 高解析度場發射型掃描式電子顯微鏡 (high resolution field-emission scanning electron microscope,FE-SEM) 55 3-3-6電化學阻抗頻譜儀 (electrochemical impedance spectroscopy,EIS) 56 3-3-7 太陽光模擬系統 58 3-3-8 分光效率光譜儀 (monochromatic incident photo-to-electron conversion efficiency,IPCE) 60 3-3-9紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy,UPS) 61 3-4 實驗步驟 63 3-4-1 元件製備 63 3-4-2 電子主導元件製備(electron only device) 70 第四章、結果與討論 71 4-1 以NMP取代DMSO探討製備FAPbI3鈣鈦礦太陽能電池之光電特性 71 4-2 (Cs/FA)Pb(I/Br)3鈣鈦礦太陽能電池製程參數探討與CsPbBr3量子點添加對其薄膜特性與電池效能影響 80 4-2-1 以Cs與Br添加比例之探討 80 4-2-2 CsPbBr3量子點最佳添加比例探討 98 4-3 以苯乙基碘化胺進行 (FA/Cs)Pb(Br/I)3 鈣鈦礦太陽能電池界面修飾對效能影響之探討 112 第五章、結論 125 第六章、參考文獻 126

    1. The International renewable energy agency world energy transitions outlook(2022).
    2. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476-480 (2015).
    3. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho and N.-G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Advanced Energy Materials, 5, 1501310 (2015).
    4. T. Wu, J. Wu, Y. Tu, X. He, Z. Lan, M. Huang and J. Lin, Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%, Journal of Power Sources, 365, 1-6 (2017).
    5. J. W. Lee, Z. Dai, C. Lee, H. M. Lee, T. H. Han, N. De Marco, O. Lin, C. S. Choi, B. Dunn, J. Koh, D. Di Carlo, J. H. Ko, H. D. Maynard and Y. Yang, Tuning molecular Interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach, Journal of the American Chemical Society, 140, 6317-6324 (2018).
    6. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131 6050-6051 (2009).
    7. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer and M. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature, 592, 381-385 (2021).
    8. D. Weber, CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite Structure, Z. Naturforsch B, 33(8), 862-865 (1978).
    9. Z. Chen, B. Turedi, A. Y. Alsalloum, C. Yang, X. Zheng, I. Gereige, A. AlSaggaf, O. F. Mohammed and O. M. Bakr, Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency, ACS Energy Letters, 4, 1258-1259 (2019).
    10. N. Li, A. Feng, X. Guo, J. Wu, S. Xie, Q. Lin, X. Jiang, Y. Liu, Z. Chen and X. Tao, Engineering the hole extraction Interface enables single‐crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior Indoor response, Advanced Energy Materials, 12, 2103241-2103243 (2021).
    11. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix and T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells, The Journal of Physical Chemistry C, 118, 16458-16462 (2013).
    12. Z. Liu, P. Liu, M. Li, T. He, T. Liu, L. Yu and M. Yuan, Efficient and stable FA‐Rich perovskite photovoltaics: from material properties to device optimization, Advanced Energy Materials, 12, 2200111 (2022).
    13. S. Jiang, Y. Luan, J. I. Jang, T. Baikie, X. Huang, R. Li, F. O. Saouma, Z. Wang, T. J. White and J. Fang, Phase transitions of formamidinium lead Iodide perovskite under pressure, Journal of the American Chemical Society, 140, 13952-13957 (2018).
    14. M. Becker, T. Kluner and M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors, Dalton Transactions, 46, 3500-3509 (2017).
    15. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead Iodide solid-state alloys, Chemistry of Materials, 28, 284-292 (2015).
    16. M. A. Green and A. Ho-Baillie, Perovskite solar cells: the birth of a new era in photovoltaics, ACS Energy Letters, 2, 822-830 (2017).
    17. Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen and M. Wang, Will organic-inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?, Nanoscale Advances, 1, 1276-1289 (2019).
    18. C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli and M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Science Advances, 5, eaav0693 (2019).
    19. Y. Cai, W. Xie, Y. T. Teng, P. C. Harikesh, B. Ghosh, P. Huck, K. A. Persson, N. Mathews, S. G. Mhaisalkar and M. Sherburne, High-throughput computational study of halide double perovskite inorganic compounds, Chemistry of Materials, 31, 5392-5401 (2019).
    20. B. Dahal and W. Li, Configuration of methylammonium lead Iodide perovskite solar cell and its effect on the device's performance: A Review, Advanced Materials Interfaces, 9, 2200042 (2022).
    21. Best-research-cell-efficiencies.
    22. W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M. B. Johnston and L. M. Herz, Charge‐carrier dynamics and mobilities in formamidinium lead mixed‐halide perovskites, Advanced Materials, 27, 7938-7944 (2015).
    23. M. Grätzel, The rise of highly efficient and stable perovskite solar cells, Accounts of Chemical Research, 50, 487-491 (2017).
    24. M. Lyu and N.-G. Park, Effect of additives AX (A= FA, MA, Cs, Rb, NH4, X= Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells, Solar RRL, 4, 2000331 (2020).
    25. H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt and M. Gratzel, Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells, Science, 370 (2020).
    26. Z. Zheng, S. Wang, Y. Hu, Y. Rong, A. Mei and H. Han, Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability, Chemical Science, 13, 2167-2183 (2022).
    27. S. Masi, A. F. Gualdrón-Reyes and I. Mora-Seró, Stabilization of black perovskite phase in FAPbI3 and CsPbI3, ACS Energy Letters, 5, 1974-1985 (2020).
    28. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorganic Chemistry, 52, 9019-9038 (2013).
    29. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals, Science, 347, 967-970 (2015).
    30. Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. M. Yang, Y. S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li and Y. Yang, Single crystal Formamidinium lead Iodide (FAPbI3): Insight into the structural, optical, and electrical properties, Advanced Materials, 28, 2253-2258 (2016).
    31. V. M. Le Corre, E. A. Duijnstee, O. El Tambouli, J. M. Ball, H. J. Snaith, J. Lim and L. J. A. Koster, Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements, ACS Energy Letts, 6, 1087-1094 (2021).
    32. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger and K. Katsiev, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347, 519-522 (2015).
    33. V. D'Innocenzo, G. Grancini, M. J. Alcocer, A. R. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nature Communications, 5, 3586 (2014).
    34. I. A. Howard, T. Abzieher, I. M. Hossain, H. Eggers, F. Schackmar, S. Ternes, B. S. Richards, U. Lemmer and U. W. Paetzold, Coated and printed perovskites for photovoltaic applications, Advanced Materials, 31, 1806702 (2019).
    35. A. D. Taylor, Q. Sun, K. P. Goetz, Q. An, T. Schramm, Y. Hofstetter, M. Litterst, F. Paulus and Y. Vaynzof, A general approach to high-efficiency perovskite solar cells by any antisolvent, Nature Communications, 12, 1878 (2021).
    36. J. W. Lee, H. S. Kim and N. G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells, Journal of the American Chemical Society, 49, 311-319 (2016).
    37. N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi and N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide, Journal of the American Chemical Society, 137, 8696-8699 (2015).
    38. J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang, P. Sun and Y. Yang, A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells, Chem, 3, 290-302 (2017).
    39. Q. Zhang, G. Ma, K. A. Green, K. Gollinger, J. Moore, T. Demeritte, P. C. Ray, G. A. Hill, X. Gu, S. E. Morgan, M. Feng, S. Banerjee and Q. Dai, FAPbI3 perovskite films prepared by solvent self-volatilization for photovoltaic applications, ACS Applied Energy Materials, 5, 1487-1495 (2022).
    40. G. Wang, L. Wang, J. Qiu, Z. Yan, K. Tai, W. Yu and X. Jiang, Fabrication of efficient formamidinium perovskite solar cells under ambient air via intermediate-modulated crystallization, Solar Energy, 187, 147-155 (2019).
    41. C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger and M. Grätzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy & Environmental Science, 9, 656-662 (2016).
    42. S. He, Y. Han, J. Guo and K. Wu, Entropy-gated thermally activated delayed emission lifetime in phenanthrene-functionalized CsPbBr3 perovskite nanocrystals, The Journal of Physical Chemistry Letters, 12, 8598-8604 (2021).
    43. X. Wang, J. Yang, X. Wang, M. Faizan, H. Zou, K. Zhou, B. Xing, Y. Fu and L. Zhang, Entropy-driven stabilization of multielement halide double-perovskite alloys, The Journal of Physical Chemistry Letters, 13, 5017-5024 (2022).
    44. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science, 7, 982-988 (2014).
    45. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorganic Chemistry, 52, 9019-9038 (2013).
    46. D. Trots and S. Myagkota, High-temperature structural evolution of caesium and rubidium triiodoplumbates, Journal of Physics and Chemistry of Solids, 69, 2520-2526 (2008).
    47. Y. Ren, J. Chen, D. Ji, Y. Sun and C. Li, Improve the quality of HC (NH2)2PbIxBr3− x through iodine vacancy filling for stable mixed perovskite solar cells, Chemical Engineering Journal, 384, 123273 (2020).
    48. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter and A. J. Pearson, Maximizing and stabilizing luminescence from halide perovskites with potassium passivation, Nature, 555, 497-501 (2018).
    49. G. Yang, H. Zhang, G. Li and G. Fang, Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency, Nano Energy, 63, 103835 (2019).
    50. M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee and D. Huh, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells, Joule, 3, 2179-2192 (2019).
    51. M. Mateen, Z. Arain, Y. Yang, X. Liu, S. Ma, C. Liu, Y. Ding, X. Ding, M. Cai and S. Dai, MACl-induced intermediate engineering for high-performance mixed-cation perovskite solar cells, ACS Applied Materials & Interfaces, 12, 10535-10543 (2020).
    52. C. Liu, W. Wu, D. Zhang, Z. Li, G. Ren, W. Han and W. Guo, Effective stability enhancement in ZnO-based perovskite solar cells by MACl modification, Journal of Materials Chemistry A, 9, 12161-12168 (2021).
    53. S. You, X. Xi, X. Zhang, H. Wang, P. Gao, X. Ma, S. Bi, J. Zhang, H. Zhou and Z. Wei, Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive, Journal of Materials Chemistry A, 8, 17756-17764 (2020).
    54. J. Dagar, M. Fenske, A. Al-Ashouri, C. Schultz, B. Li, H. Köbler, R. Munir, G. Parmasivam, J. Li and I. Levine, Compositional and interfacial engineering yield high-performance and stable pin perovskite solar cells and mini-modules, ACS Applied Materials & Interfaces, 13, 13022-13033 (2021).
    55. Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao, X. Liu, D. Yu and Q. Zhao, Efficient perovskite solar cells fabricated through CsCl‐enhanced PbI2 precursor via sequential deposition, Advanced Materials, 30, 1803095 (2018).
    56. R. D. Chavan, D. Prochowicz, P. Yadav, M. M. Tavakoli, A. Nimbalkar, S. P. Bhoite and C. K. Hong, Effect of CsCl additive on the morphological and optoelectronic properties of formamidinium lead iodide perovskite, Solar RRL, 3, 1900294 (2019).
    57. H. T. Pham, Y. Yin, G. Andersson, K. J. Weber, T. Duong and J. Wong-Leung, Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells, Nano Energy, 87, 106226 (2021).
    58. Y. Liu, S. Akin, A. Hinderhofer, F. T. Eickemeyer, H. Zhu, J. Y. Seo, J. Zhang, F. Schreiber, H. Zhang and S. M. Zakeeruddin, Stabilization of highly efficient and stable phase‐pure FAPbI3 perovskite solar cells by molecularly tailored 2D‐overlayers, Angewandte Chemie International Edition, 59, 15688-15694 (2020).
    59. C. Li, Y. Zhou, L. Wang, Y. Chang, Y. Zong, L. Etgar, G. Cui, N. P. Padture and S. Pang, Methylammonium‐mediated evolution of mixed‐organic‐cation perovskite thin films: a dynamic composition‐tuning process, Angewandte Chemie International Edition, 56, 7674-7678 (2017).
    60. T. A. Doherty, S. Nagane, D. J. Kubicki, Y.-K. Jung, D. N. Johnstone, A. N. Iqbal, D. Guo, K. Frohna, M. Danaie and E. M. Tennyson, Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases, Science, 374, 1598-1605 (2021).
    61. C. Gao, H. Dong, X. Bao, Y. Zhang, A. Saparbaev, L. Yu, S. Wen, R. Yang and L. Dong, Additive engineering to improve the efficiency and stability of inverted planar perovskite solar cells, Journal of Materials Chemistry C, 6, 8234-8241 (2018).
    62. W. Pan, J. Lin, J. Wu, B. Rong, X. Zhang, Q. Chen, M. Zhang, S. Wang, W. Sun and X. Wang, Interface modification by formamidine acetate for efficient perovskite solar cells, Solar Energy, 232, 304-311 (2022).
    63. B. Li, X. Tan, P. Xiang, W. Yan, K. Zhang, J. Li, Y. Wu, Y. Liu, M. Yu and H. Han, Modification of SnO2 by acidic FAAc-HI solution for efficient and stable perovskite solar cells with a multifunctional interface, Journal of Materials Research, 37, 2932-2941 (2022).
    64. X. Ling, H. Zhu, W. Xu, C. Liu, L. Pan, D. Ren, J. Yuan, B. W. Larson, C. Grätzel and A. R. Kirmani, Combined precursor engineering and grain anchoring Leading to MA‐Free, phase‐pure, and stable α‐formamidinium lead iodide perovskites for efficient solar cells, Angewandte Chemie International Edition, 60, 27299-27306 (2021).
    65. M. A. Mahmud, T. Duong, J. Peng, Y. Wu, H. Shen, D. Walter, H. T. Nguyen, N. Mozaffari, G. D. Tabi and K. R. Catchpole, Origin of efficiency and stability enhancement in high‐performing mixed dimensional 2D‐3D perovskite solar cells: a review, Advanced Functional Materials, 32, 2009164 (2022).
    66. L. Dou, Emerging two-dimensional halide perovskite nanomaterials, Journal of Materials Chemistry C, 5, 11165-11173 (2017).
    67. R. Younts, H.-S. Duan, B. Gautam, B. Saparov, J. Liu, C. Mongin, F. N. Castellano, D. B. Mitzi and K. Gundogdu, Efficient generation of long-lived triplet excitons in 2D hybrid perovskite, Advanced Materials, 29 (2017).
    68. Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen and W. Huang, Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application, Journal of Materials Chemistry A, 7, 13860-13872 (2019).
    69. S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou and L. Huang, Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites, Nature Communications, 11, 664 (2020).
    70. G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang and G. Xing, Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells, Advanced Materials, 34, 2105635 (2022).
    71. D. P. Nenon, K. Pressler, J. Kang, B. A. Koscher, J. H. Olshansky, W. T. Osowiecki, M. A. Koc, L.-W. Wang and A. P. Alivisatos, Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases, Journal of the American Chemical Society, 140, 17760-17772 (2018).
    72. N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely and H. J. Snaith, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites, ACS Nano, 8, 9815-9821 (2014).
    73. X. Zheng, Y. Deng, B. Chen, H. Wei, X. Xiao, Y. Fang, Y. Lin, Z. Yu, Y. Liu and Q. Wang, Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells, Advanced Materials, 30, 1803428 (2018).
    74. T. M. Koh, V. Shanmugam, X. Guo, S. S. Lim, O. Filonik, E. M. Herzig, P. Müller-Buschbaum, V. Swamy, S. T. Chien and S. G. Mhaisalkar, Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics, Journal of Materials Chemistry A, 6, 2122-2128 (2018).
    75. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications, Chemical Reviews, 109, 5868-5923 (2009).
    76. J. Zhang, Z. Hu, L. Huang, G. Yue, J. Liu, X. Lu, Z. Hu, M. Shang, L. Han and Y. Zhu, Bifunctional alkyl chain barriers for efficient perovskite solar cells, Chemical Communications, 51, 7047-7050 (2015).
    77. F. Wang, W. Geng, Y. Zhou, H. H. Fang, C. J. Tong, M. A. Loi, L. M. Liu and N. Zhao, Phenylalkylamine passivation of organolead halide perovskites enabling high‐efficiency and air‐stable photovoltaic cells, Advanced Materials, 28, 9986-9992 (2016).
    78. T. Niu, J. Lu, X. Jia, Z. Xu, M.-C. Tang, D. Barrit, N. Yuan, J. Ding, X. Zhang and Y. Fan, Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells, Nano letters, 19, 7181-7190 (2019).
    79. J. Bao, L. He, C. Gao, J. Liang and W. Shen, High‐performance perovskite solar cells with low open‐circuit voltage loss and excellent stability after p‐F‐PEAI posttreatment, Energy Technology, 10, 2300295 (2023).
    80. J. Wang, L. Liu, S. Chen, G. Ran, W. Zhang, M. Zhao, C. Zhao, F. Lu, T. Jiu and Y. Li, Growth of 2D passivation layer in FAPbI3 perovskite solar cells for high open-circuit voltage, Nano Today, 42, 101357 (2022).
    81. N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng and L. Wang, Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells, Nature Energy, 4, 408-415 (2019).
    82. S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao and Y. Gao, Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts, Science, 365, 473-478 (2019).
    83. Z. Wang, Y. Lu, Z. Xu, J. Hu, Y. Chen, C. Zhang, Y. Wang, F. Guo and Y. Mai, An embedding 2D/3D heterostructure enables high‐performance FA‐alloyed flexible perovskite solar cells with efficiency over 20%, Advanced Science, 8, 2101856 (2021).
    84. Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. Oliver and J. Lim, A piperidinium salt stabilizes efficient metal-halide perovskite solar cells, Science, 369, 96-102 (2020).
    85. D. G. Lee, D. H. Kim, J. M. Lee, B. J. Kim, J. Y. Kim, S. S. Shin and H. S. Jung, High efficiency perovskite solar cells exceeding 22% via a photo‐assisted two‐step sequential deposition, Advanced Functional Materials, 31, 2006718 (2021).
    86. J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun and Y. Huang, 2D perovskite stabilized phase-pure formamidinium perovskite solar cells, Nature Communications, 9, 3021 (2018).
    87. Y. Zhang, S. Seo, S. Y. Lim, Y. Kim, S.-G. Kim, D.-K. Lee, S.-H. Lee, H. Shin, H. Cheong and N.-G. Park, Achieving reproducible and high-efficiency (>21%) perovskite solar cells with a presynthesized FAPbI3 powder, ACS Energy Letters, 5, 360-366 (2019).
    88. Y. Zhang, Y. Li, L. Zhang, H. Hu, Z. Tang, B. Xu and N. G. Park, Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells, Advanced Energy Materials, 11, 2102538 (2021).
    89. I. S. Yang and N. G. Park, Dual additive for simultaneous improvement of photovoltaic performance and stability of perovskite solar cell, Advanced Functional Materials, 31, 2100396 (2021).
    90. H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu, D. Shen, Y. Zhang, H. T. Chandran, J. Hao and C. s. Lee, Controllable heterogenous seeding‐induced crystallization for high‐efficiency FAPbI3‐based perovskite solar cells over 24%, Advanced Materials, 34, 2204366 (2022).
    91. S. Jeong, S. Seo, H. Yang, H. Park, S. Shin, H. Ahn, D. Lee, J. H. Park, N. G. Park and H. Shin, Cyclohexylammonium‐Based 2D/3D Perovskite heterojunction with funnel‐like energy band alignment for efficient solar cells (23.91%), Advanced Energy Materials, 11, 2102236 (2021).
    92. R. Zhi, C.-Q. Yang, M. U. Rothmann, H.-Q. Du, Y. Jiang, Y.-Y. Xu, Z.-W. Yin, Y.-P. Mo, W. Dong and G. Liang, Direct observation of intragrain defect elimination in FAPbI3 perovskite solar cells by two-dimensional PEA2PbI4, ACS Energy Letters, 8, 2620-2629 (2023).
    93. D.-H. Kang, S.-U. Lee and N.-G. Park, Effect of residual chloride in FAPbI3 film on photovoltaic performance and stability of perovskite solar cell, ACS Energy Letters, 8, 2122-2129 (2023).
    94. S. U. Lee, H. Park, H. Shin and N. G. Park, Atomic layer deposition of SnO2 using hydrogen peroxide improves the efficiency and stability of perovskite solar cells, 15, Nanoscale, 5044-5052 (2023).
    95. V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, General working principles of CH3NH3PbX3 perovskite solar cells, Nano Letters, 14, 888-893 (2014).
    96. A. Bou, A. Pockett, H. Cruanyes, D. Raptis, T. Watson, M. J. Carnie and J. Bisquert, Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells, APL Materials, 10, 051104 (2022).
    97. J. H. Heo, Y. K. Choi, C. W. Koh, H. Y. Woo and S. H. Im, Semitransparent FAPbI3‐xBrx perovskite solar cells stable under simultaneous damp heat (85°C/85%) and 1 sun light soaking, Advanced Materials Technologies, 4, 1800390 (2019).
    98. L. K. Ono, E. J. Juarez-Perez and Y. Qi, Progress on perovskite materials and solar cells with mixed cations and halide anions, ACS Applied Materials & Interfaces, 9, 30197-30246 (2017).
    99. G. Tumen‐Ulzii, C. Qin, D. Klotz, M. R. Leyden, P. Wang, M. Auffray, T. Fujihara, T. Matsushima, J. W. Lee and S. J. Lee, Detrimental effect of unreacted PbI2 on the long‐term stability of perovskite solar cells, Advanced Materials, 32, 1905035 (2020).
    100. T. Liu, Y. Zong, Y. Zhou, M. Yang, Z. Li, O. S. Game, K. Zhu, R. Zhu, Q. Gong and N. P. Padture, High-performance formamidinium-based perovskite solar cells via microstructure-mediated δ-to-α phase transformation, Chemistry of Materials, 29, 3246-3250 (2017).
    101. L. Duan, H. Zhang, F. T. Eickemeyer, J. Gao, S. M. Zakeeruddin, M. Grätzel and J. Luo, CsPbBr3 quantum dots sensitized mesoporous TiO2 electron transport layers for high efficiency perovskite solar cells, Solar RPL, 10, 2300072 (2023).
    102. J. W. Lee, Z. Dai, T. H. Han, C. Choi, S. Y. Chang, S. J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang and Y. Yang, 2D Perovskite Stabilized Phase-Pure Formamidinium Perovskite Solar Cells, Nature Communications, 9, 3021 (2018).
    103. D. S. Lee, J. S. Yun, J. Kim, A. M. Soufiani, S. Chen, Y. Cho, X. Deng, J. Seidel, S. Lim, S. Huang and A. W. Y. Ho-Baillie, Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells, ACS Energy Letters, 3, 647-654 (2018).
    104. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, Surface passivation of perovskite film for efficient solar cells, Nature Photonics, 13, 460-466 (2019).
    105. T. Gao, Y. Jiang, S. Yang, J. Hu, Z. Zhang, P. Tang, Y. Cui, M. Sulaman, L. Tang and B. Zou, Template-free Synthesis of Perovskite (PEA)2PbI4 Nanowires by Ion-Intercalation Processing for Single-Nanowire Photodetectors, Journal of Alloys and Compounds, 940, 168894 (2023).

    無法下載圖示 全文公開日期 2025/07/26 (校內網路)
    全文公開日期 2025/07/26 (校外網路)
    全文公開日期 2025/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE