簡易檢索 / 詳目顯示

研究生: 黃禹傑
YU-CHIEH HUANG
論文名稱: 藍色濾光片用色膏之濕式研磨效應及STEP之分散性及穩定性分析之研究
The study of wet mill effect , the dispeprsion of STEP and stability analysis of the paste for blue color filter
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱士軒
none
陳建光
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 120
中文關鍵詞: 彩色濾光片顏料分散粒徑分佈光硬化樹脂
外文關鍵詞: STEP, color filter, pigment
相關次數: 點閱:291下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以研磨時間參數,去探討藍色濾光片光學性質,其透光率、色譜儀、黏著力之測試並探討光硬化樹脂組成上的配比,利用熱性質和物性上達到較好比例,實驗上利用紫外線光譜儀去研究其透光率的高低,而光學性能方面則使用偏光儀測定顏料樹脂光硬化後光學特性色座標和經過耐熱性質及耐化學藥品之測試之色差值△E,在黏結力方面則是以ASTM D3359來判斷其剝離性。
    在於高分子膠體粒徑分佈分析中,就以光學離心機為較好的分析方法,主要是利用粒子的遷移時讓光的穿透和消失所作的圖,在高分子膠體中,在於品質上和物特性上的控制是非常有用的,在於分析上是利用離心一段時間後的變化,並利用公式化的方式,去敘述去佐證其圖上所顯現的意義。
    本研究上所測定的粒徑大小分佈,是使用空間和時間的兩種不同的方式,在分析時所取的任一點與下一點之間的變化,並利用點與點之間的跨距可得到其粒子遷移的現象,還有顆粒分佈的現象等,本實驗室所用的是空間上的粒子的遷移變化所分析其粒徑分佈。
    利用掃描式電子顯微鏡和L.U.M.(Labor-,Umweltdiagnistik & Medizintechnik)之Dispersion Analyser LUMiSizer,觀察其表面形態及粒徑分佈和粒徑大小,以分析其研磨方式與材料上混和順序是否有達到我們所要的粒徑大小與分散情形。


    This study used grinding time parameters to investigate the optical and physical characteristics of blue filters, including their transparency, chromatographic properties, and adhesion, and explore how to achieve a desirable mixture photo-curing resins from the point of view of thermal and physical properties. A UV spectrometer was used to measure transparency, and a polarimeter used to measure the optical characteristics and color coordinates after photo-curing of pigmented resins. The color differential △E was measured following heat-resistance and chemical resistance testing. ASTM D3359 procedures were employed to determine adhesion and peeling.
    An optical centrifuge was used to analyze the diameter distribution of colloidal polymer particles. Light transmission and extinction drawings were obtained while particles were migrating. Control of polymer colloid quality and physical characteristics is extremely useful. After centrifugation had been applied for a certain period of time, formulas were used to determine and verify the significance of changes observed in the drawings.

    The particle diameter distribution measured in this study can be analyzed using both spatial and temporal methods to determine changes between one point and the next. The distance between individual points can yield information on particle migration and particle distribution. This laboratory used data on the spatial movement of particles to analyze particle diameter distribution.

    A scanning electron microscope and a L.U.M. (Labor, Umweltdiagnistik & Medizintechnik) "LUMiSizer" dispersion analyzer were used to observe surface form, particle diameter, and particle diameter distribution in order to determine whether grinding method and order of mixing materials can achieve the desired particle diameters and dispersion.

    中文摘要 ………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 第一章 緒論……………………………………………………………1 1.1 前言……………………………………………………………1 1.2 研究背景……………………………………………………5 1.2.1化妝品…………………………………………………6 1.2.2醫療和藥物……………………………………………6 1.2.3 生物細胞分離工程………………………………………7 1.2.4 紙張、塗料………………………………………………7 1.2.5 塑料改性…………………………………………………7 1.2.6 陶瓷材料…………………………………………………8 參考文獻…………………………………………………………………9 第二章 文獻回顧……………………………………………………10 2.1 光硬化樹脂之源起………………………………………………10 2.2 高分子聚合物的光化學反應……………………………………11 2.2.1 光起始聚合反應系統的特點…………………………12 2.2.2 自由基光起始聚合系統……………………………14 2.2.3 陽離子光敏聚合系統………………………………15 2.3  光硬化樹脂組成………………………………………………18 2.3.1活性寡聚體(Reactive oligomer)…………………18 2.3.2單體……………………………………………………19 2.3.3光起始劑………………………………………………19 2.3.4分散劑…………………………………………………20 2.3.5添加劑…………………………………………………23 2.4 物理分散奈米粉體……………………………………………24 2.4.1 超音波法……………………………………………24 2.4.2 機械分散法…………………………………………28 2.5 膠體的本質……………………………………………………31 2.5.1 膠體體系……………………………………………33 2.5.1.1高分子溶液…………………………………33 2.5.1.2締和膠體……………………………………33 2.5.1.3溶膠…………………………………………33 2.5.2分散體系也可以按分散相和分散介質的聚集狀態不同來分類…………………………………………………………………34 2.6 影響奈米粉體穩定性的因素…………………………………35 2.6.1 聚電解質分子量………………………………………36 2.6.2 分散劑的用量…………………………………………37 2.6.3 溫度……………………………………………………38 2.7 粒徑的測定方法………………………………………………40 參考文獻………………………………………………………………42 第三章 藍色濾光片之奈米顏料濕式研磨之分散性及穩定性之研究散………………………………………………………………………49 英文摘要………………………………………………………………49 中文摘要………………………………………………………………49 3.1 前言……………………………………………………………51 3.2 實驗……………………………………………………………52 3.2.1 奈米溶液分散性及穩定性之測定……………………52 3.2.2 BLUE color filter 塗膜物性之測定………………54 3.2.2.1 BLUE FILTER乾膜之試驗…………………54 3.2.2.2 透光率之測定………………………………54 3.2.2.3 色座標分析…………………………………55 3.2.2.4 表面形態之觀察……………………………55 3.2.2.5 黏度之測定…………………………………56 3.2.2.6 百格TEST……………………………………56 3.2.2.7 顯影測定……………………………………56 3.2.2.8熱重分析儀之測定(Thermal Gravimetric Analyzer:TGA)…………………………………………………………57 3.3 結果與討論……………………………………………………58 3.3.1 研磨時間對奈米分散性之效應………………………58 3.3.2 研磨方式對奈米溶液分散性之影響效應……………58 3.3.3 分散劑對奈米溶液分散穩定性之影響效應…………59 3.3.4 溫度對奈米溶液分散穩定度之效應…………………60 3.3.5 光學特性之研磨分散效應……………………………61 3.3.6 掃描是電子顯微鏡及穿透式電子顯微鏡之觀察其表面形態……………………………………………………………………62 3.4 結論………………………………………………………………63 參考文獻………………………………………………………………65 第四章 總結論………………………………………………………69 圖表索引 第三章 圖4-1研磨流程………………………………………………………71 圖4-2 L.U.M原理示意圖……………………………………………73 圖4-3 粒子沉降過程示意圖…………………………………………74 圖4-4粒子漂浮過程示意圖…………………………………………75 圖4-5 時間上與透光率之穩定性作圖………………………………76 圖4-6 顏料位置對透光率之參考圖…………………………………77 圖4-7 顏料位置對透光率之未加工作圖……………………………78 圖 4-8顏料粒子位置對透光率之加工後作圖………………………79 圖4-9 時間對透光率之穩定性比較…………………………………80 圖4-10 BLUE色膏用濕式研磨機………………………………………81 圖4-11 BLUE色膏用高剪切力高速攪拌………………………………82 圖4-12 BLUE色膏用高剪切力高速攪拌之粒徑分佈…………………83 圖4-13 BLUE色膏用濕式研磨之粒徑分佈……………………………84 圖4-14 blue色膏之研磨0.5hr………………………………………85 圖4-15 blue色膏之研磨1.5hr………………………………………86 圖4-16 blue色膏之研磨2.5hr………………………………………87 圖4-17 blue色膏研磨0.5hr之粒徑分佈……………………………88 圖4-18 blue色膏研磨1.5hr之粒徑分佈……………………………89 圖4-19 blue色膏研磨2.5hr之粒徑分佈……………………………90 圖4-20 BLUE色膏之未添加分散劑作圖………………………………91 圖4-21 BLUE色膏添加Solsperse 39000分散劑……………………92 圖4-22 BLUE色膏添加BYK分散劑……………………………………93 圖4-23 未添加分散劑之粒徑分佈……………………………………94 圖4-24 BYK分散劑之粒徑分佈………………………………………95 圖4-25 Solsperse 39000分散劑之粒徑分佈………………………96 圖4-26 Solsperse 39000&BYK穩度度比較…………………………97 圖4-27 BLUE色膏4℃下離心力測試…………………………………98 圖4-28 BLUE色膏4℃粒徑分佈圖……………………………………99 圖4-29 BLUE色膏4℃時間和透光率之穩定度作圖…………………100 圖4-30BLUE色膏25℃時間和透光率之穩定性作圖………………101 圖4-31 Blue色膏研磨時間0.5hr、1.5hr、2.5hr透光率知之疊圖………………………………………………………………………102 圖4-32 Blue色膏研磨時間0.5hr之色譜圖………………………103 圖4-33 Blue色膏研磨時間1.5hr之色譜圖………………………104 圖4-34 blue色膏研磨時間2.5hr之色譜圖………………………105 圖4-35邊緣未有破膜現象…………………………………………107 圖4-36 ASTM D3359 黏著力TEST規範………………………………108 圖4-37 blue色膏研磨2.5hr分散之SEM圖………………………109 圖4-38 blue色膏研磨2.5hr團聚之SEM圖…………………………110 圖4-39 未研磨顏料之TEM圖………………………………………111 圖4-40 研磨後顏料團聚之TEM圖…………………………………112 圖4-41 研磨後顏料分散之TEM圖…………………………………113 表4-1 配方表…………………………………………………………72 表4-2 blue色膏0.5hr之色譜圖……………………………………103 表4-3 blue色膏1.5hr之色譜圖……………………………………104 表4-4 blue色膏2.5hr之色譜圖……………………………………105 表4-5顯影測試有無破膜……………………………………………106

    參考文獻
    1. Pugh R.J.,Bergstrom L.eds.Surface and Colloid Chemistry in Advanced Ceramics Processing.Surfactant Science Series,Vol. 51 . Marcel Dekker Inc.,1994
    2. Lee B. I. and Pope E J. Chemical Processing of Ceramics. New York:Marcel Dekker,1994
    3. Gozzelino,G.;Malucelli,G.;Lambertini,V.,appl.polym.sci.,78,458(2000)
    4. Yilmaz,Tulay;Ozarslan,Ozdemir;Yildiz,Emel;Kuyulu,Abdulkadir;Ekinci,Ekrem,J.appl.polym.sci.,69,1873
    5. Huang,Junlian;Huang,Xiaoyu;Liu,Hui,J.appl.poly.sci.65,2095(1997)
    6. T. Sobisch, D. Lerche, Interaction between tailored particle interfaces characterized by analytical centrifugation, http://www.sciencedirect.com/preprintarchive,
    7. D.Lerche,T. Sobisch, Consolidation of concentrated dispersions of nano and micro particles determined by analytical centrifugation,Particulate System analysis,Stratford-upon-Avon,21-23rdSeptember 2005
    8. G. Mie, Beiträge zur Optik trüber Medien. Speziell kolloidaler Goldlösungen,Ann.Phys 1908,25,377-452.
    9. H.C. van de Hulst, Light Scattering by smell particles,Wiley, New York,1957.
    10. D.Lerche,T. Sobisch, Consolidation of concentrated dispersions of nano and micro particles determined by analytical centrifugation,Particulate System analysis,Stratford-upon-Avon,21-23rdSeptember 2005
    11. T. Sobisch,D. Lerche, Interaction between tailored particle interfaces characterized by analytical centrifugation, Chemistry Preprint Archive, volume 2003, issue 7,pp.198-218, http://www.sciencedirect.com/preprintarchive.
    12. D.Lerche, Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field,J. Dispersion Sci. Techn.2002,23,699-709
    13. H. J. Kamack, Particle Size Determination by Centrifugal Sedimentation, Anal. Chem.1951,23,844-850
    14. Guo L. C.,Zhang Y. and Uchida N., et al. J. Eur.Ceram.,1997,17:345-350
    15. Jean J.H. and Wang H. R. J. Am. Ceram. Soc .,1998,81(6):1589-1599
    16. Sakka Y.﹐Nakano K.and Hiraga K.J.Am. Ceram.Soc.﹐2001﹐84:2132-2134
    17. Howatt G. N.Breckenridag R. G. and Brownlow J. M. J. Am . Ceram. Soc.,1947,30:237∼242
    18. J.E.Dietz and N.A.Ppeppas,”Reaction Kinetics and chemical changes during polymerization of multifunctional (meth)acrylate for the production of higly crosslinked polymers used in information storage system ,Polymer,31,p.95(1990)
    19. N.S.Allen,”Photoinitiators for uv visible curing of coating:mechanisms and properties”,J.of Photochemistry and Photobiology A : Chemistry,100,p101(1996)
    20. S.B. Johnson, G.V. Franks, P.J. Scales, D.V. Boger, T.W. Healy, Surface chemistry- rheology relationships in concentrated mineral suspensions, Int. J. Miner. Process. 58(2000) 267-304.
    21. Z. Zhou, P.J. Scales, D.V. Boger, Chemical and physical control of the rheology of concentrated metal oxide suspensions, Chem. Eng. Sci. 56 (2001) 2901-2920.
    22. T. Sobisch, D. Lerche, T. Detloff, M. Beiser, A. Erk, Tracing the centrifugal separation of fine-particle slurries by analytical centrifugation, Effect of centrifugal acceleration, particle interaction and concentration, Filtration, in press. Chemistry Preprint Archive, Volume 2003, Issue 7, July 2003, Pages 198-218.

    QR CODE