簡易檢索 / 詳目顯示

研究生: 吳勇美
Chintya Gunarto
論文名稱: 蓖麻油基微乳劑作為蝦青素載體的配方和測試以及其用於外用給藥之可行性
Formulation and testing of castor oil-based microemulsions as carrier for astaxanthin for possible application in topical drug delivery
指導教授: 朱義旭
Yi-Hsu Ju
吳耀豐
Alchris Woo Go
口試委員: 李振綱
Cheng-Kang Lee
Felycia Edi Soetaredjo
Suryadi Ismadji
翁玉鑽
Artik Elisa Angkawijaya
吳耀豐
Alchris Woo Go
朱義旭
Yi-Hsu Ju
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 128
中文關鍵詞: 微乳液蓖麻油纖維素納米晶體蝦青素穩定生物活性釋放分布
外文關鍵詞: microemulsion, castor oil, cellulose nanocrystals, astaxanthin, stability, biological activities, release profile
相關次數: 點閱:221下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微乳液 (ME) 是一種由油和水組成,並添加了表面活性劑和助表面活性劑的膠體懸浮液。ME被探討其在各種食品、化妝品和藥物配方中的應用之可能。在本研究中以具有抗炎和鎮痛活性之蓖麻油為油相、Tween 80 或Tween 20為表面活性劑、甘油或乙醇為輔助表面活性劑,以及水相來形成ME。在表面活性劑混合物為Tween 80及乙醇;其重量比為2下可獲得的最大 ME 區域。 ME 的水力動力學直徑取決於油相和載藥量,纖維素奈米晶(CNC) 有潛力提高具有高蓖麻油含量的 ME 的穩定性。在自由基清除活性測試中, 當 ME 配方中蓖麻油的比例從5 wt.%增加到28 wt.%時,IC50 的濃度從 494.47 µL/mL 降低到 52.25 µL/mL。在抗微生物試驗中觀察到相同的現象,分別可以抑制 94.9% 和 93.9% 的大腸桿菌和金黃色葡萄球菌的生長。從弗朗茲擴散法所得的12 小時蝦青素累積釋放量,在pH 為 7.4 和 5.6時分別為 11.17% 及 37.48%。蓖麻油含量為 10 和 15 wt.%在pH 5.6 的 介質可得高百分比釋放,且使用 Sigmoidal 模型最佳描述此釋放曲線。 ME 配方中不同的初始加載量和 CNC 添加量會產生不同的釋放常數 (k) 和 ASX 釋放動力學的最大理論釋放 (Rmax)。以蓖麻油為基 的 ME 對 HeLa 細胞的體外細胞毒性的初步研究顯示,在 200 µg/mL 和 7500 µg/mL 的濃度下,存活率分別僅為 76.36% 至 86.25% 和 27.44% 至 36.71%。這些結果證實了蓖麻油基微乳劑有可能作為蝦青素載體用於外部給藥,也可能用於治療癌細胞。


    Microemulsion (ME) is a colloidal suspension that consists of oil and water, with addition of a surfactant and cosurfactant. It is explored for their use in various food, cosmetics, and drug formulations. In this study, castor oil (CO), which has anti-inflammatory and analgesic activities is used as the oil phase along with Tween 80 or Tween 20 as the surfactant, glycerol or ethanol as the cosurfactant, and aqueous phase in ME formulations. The largest ME region was attained at a surfactant mixture of Tween 80 and ethanol with weight ratio = 2. The hydrodynamic diameter of ME is dependent on the oil phase and amount of drug loaded, with cellulose nanocrystal (CNC) potentially improving the stability of ME having high CO fraction. The concentration at IC50 was reduced from 494.47 µL/mL to 52.25 µL/mL as the fraction of castor oil in ME formulation increased between 5~28 wt.% for free-radical scavenging activity. The same phenomenon was observed for anti-microbial assay, allowing 94.9 % and 93.9 % inhibition of E.coli and S.aureus growth, respectively. Cumulative ASX release obtained from Franz diffusion technique at 12 h ranged from 11.17 % to 37.48 % for pH 7.4 and 5.6, respectively. Castor oil with 10 and 15 wt.% resulted in high percentage release at pH medium of 5.6 and the release profile was best describe using a Sigmoidal model. Different initial loadings and addition of CNC in ME formulations gave different release constants (k) and maximum theoretical release (Rmax) of ASX release kinetic. Preliminary investigation on the in-vitro cytotoxicity of CO-based MEs on HeLa cells resulted in viabilities of only 76.36 % to 86.25 % and 27.44 % to 36.71 % at concentration of 200 µg/mL and 7500 µg/mL, respectively. These results confirmed that castor oil-based microemulsions could potentially be used as astaxanthin carrier for topical drug delivery and may also be used possibly be used in treatment of cancer cells.

    摘要 ii ABSTRACT iii ACKNOWLEDGEMENT iv TABLE OF CONTENTS v LIST OF ABBREVIATIONS viii LIST OF FIGURES x LIST OF TABLES xiii CHAPTER 1 1 1.1. Background of the Study 1 1.2. Goal and Objectives 3 1.3. Significance of the Study 3 1.4. Scope and Limitations 4 CHAPTER 2 5 2.1. Microemulsion 5 2.2. Components of a microemulsion 10 2.2.1. Oil 10 2.2.2. Surfactant 11 2.2.3. Cosurfactant 13 2.2.4. Pickering agent 14 2.3. Characteristics of microemulsion 15 2.3.1. Pseudoternary area 15 2.3.2. Hydrodynamic diameter 16 2.3.3. Storage stability 18 2.3.4. Biological activities 21 2.4. Hydrophobic drug: Astaxanthin 23 2.5. Drug or active compound release 25 2.5.1. Franz diffusion cell 26 2.5.2. Models to describe drug release profile 27 CHAPTER 3 30 3.1. Materials 30 3.2. Construction of pseudoternary phase diagram 32 3.3. Preparation of microemulsions 32 3.4. Physicochemical characteristics 32 3.5. Storage stability test 33 3.5.1. Heating-cooling stability test 33 3.5.2. Freeze-thaw stability test 34 3.5.3. Centrifugal stability test 34 3.6. Preparation of MEs-modified 34 3.6.1. Preparation of cellulose nanocrystal 34 3.6.2. Formulation of ASX loaded microemulsion 35 3.7. Biological activity assays 35 3.7.1. Free-radical scavenging activity 35 3.7.2. Anti-microbial activity 36 3.7.3. In-Vitro Cytotoxicity 36 3.8. Statistical and regression analysis 37 3.9. Drug release 38 3.9.1. Release study by Franz diffusion cell 38 3.9.2. Stability of ASX loaded-microemulsion 39 CHAPTER 4 41 4.1. Pseudoternary phase diagram 41 4.2. Characterization of ME 45 4.3. Astaxanthin loaded-microemulsion 48 4.4. Stability study of ME and ME@ASX 49 CHAPTER 5 53 5.1. Effect of HD on different formulations 53 5.2. Effect of astaxanthin loading on castor oil-based microemulsions 57 5.3. Effects of microemulsion formulation on the hydrodynamic diameter 57 5.4. Free-radical scavenging activity of castor oil-based microemulsions 61 5.5. Anti-microbial activity of castor oil-based microemulsions 62 5.6. Stability of castor oil-based microemulsions 64 CHAPTER 6 71 6.1. Stability of ASX loaded in castor-oil based microemulsions 71 6.2. Release or diffusion of ASX from ASX-loaded CO-based ME at different pH 76 6.3. Influence of loading on the release or diffusion of ASX from ASX-loaded CO-based MEs 80 6.4. Influence of CNC addition on release study 82 6.5. Cytotoxicity of castor oil-based microemulsions 83 CHAPTER 7 85 7.1. Conclusions 85 7.2. Recommendations 86 REFERENCES 87 APPENDIX 103

    [1] N.Pal, S.Kumar, A.Bera, A.Mandal, Phase behaviour and characterization of microemulsion stabilized by a novel synthesized surfactant: Implications for enhanced oil recovery, Fuel. 235 (2019) 995–1009. https://doi.org/10.1016/j.fuel.2018.08.100.
    [2] M.D.Chatzidaki, E.Mitsou, A.Yaghmur, A.Xenakis, V.Papadimitriou, Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants, Colloids Surfaces A Physicochem. Eng. Asp. 483 (2015) 130–136. https://doi.org/10.1016/j.colsurfa.2015.03.060.
    [3] K.Rajpoot, R.K.Tekade, Microemulsion as drug and gene delivery vehicle: An inside story, Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-814487-9.00010-7.
    [4] S.Narasimha Murthy, H.N.Shivakumar, Topical and Transdermal Drug Delivery, First Edit, Vitthal S. Kulkarni, 2010. https://doi.org/10.1016/b978-0-8155-2025-2.10001-0.
    [5] R.R.Hegde, A.Verma, A.Ghosh, Microemulsion: New Insights into the Ocular Drug Delivery, ISRN Pharm. 2013 (2013) 1–11. https://doi.org/10.1155/2013/826798.
    [6] B.Shao, L.Sun, N.Xu, H.Gu, H.Ji, L.Wu, Development and Evaluation of Topical Delivery of Microemulsions Containing Adapalene (MEs-Ap) for Acne, AAPS PharmSciTech. 22 (2021) 1–11. https://doi.org/10.1208/s12249-021-01989-w.
    [7] Y.H.Cho, S.Kim, E.K.Bae, C.K.Mok, J.Park, Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures, J. Food Sci. 73 (2008). https://doi.org/10.1111/j.1750-3841.2008.00688.x.
    [8] X.Sha, J.Wu, Y.Chen, X.Fang, Self-microemulsifying drug-delivery system for improved oral bioavailability of probucol: Preparation and evaluation, Int. J. Nanomedicine. 7 (2012) 705–712. https://doi.org/10.2147/IJN.S28052.
    [9] M.Ghorbanzadeh, N.Farhadian, S.Golmohammadzadeh, M.Karimi, M.Ebrahimi, Formulation, clinical and histopathological assessment of microemulsion based hydrogel for UV protection of skin, Colloids Surfaces B Biointerfaces. 179 (2019) 393–404. https://doi.org/10.1016/j.colsurfb.2019.04.015.
    [10] J.Liu, Q.Wang, E.Omari-Siaw, M.Adu-Frimpong, J.Liu, X.Xu, J.Yu, Enhanced oral bioavailability of Bisdemethoxycurcumin-loaded self-microemulsifying drug delivery system: Formulation design, in vitro and in vivo evaluation, Int. J. Pharm. 590 (2020) 119887. https://doi.org/10.1016/j.ijpharm.2020.119887.
    [11] C.Vieira, S.Evangelista, R.Cirillo, A.Lippi, C.A.Maggi, S.Manzini, Effect of ricinoleic acid in acute and subchronic experimental models of inflammation, Mediators Inflamm. 9 (2000) 223–228. https://doi.org/10.1080/09629350020025737.
    [12] S.N.Naik, D.K.Saxena, B.R.Dole, S.K.Khare, Potential and perspective of castor biorefinery, Elsevier B.V., 2018. https://doi.org/10.1016/B978-0-444-63992-9.00021-5.
    [13] J.Mandić, V.Pirnat, M.Luštrik, I.German Ilić, F.Vrečer, M.Gašperlin, A.Zvonar Pobirk, Solidification of SMEDDS by fluid bed granulation and manufacturing of fast drug release tablets, Int. J. Pharm. 583 (2020). https://doi.org/10.1016/j.ijpharm.2020.119377.
    [14] F.H.Xavier-Junior, C.Vauthier, A.R.V.Morais, E.N.Alencar, E.S.T.Egito, Microemulsion systems containing bioactive natural oils: an overview on the state of the art, Drug Dev. Ind. Pharm. 43 (2017) 700–714. https://doi.org/10.1080/03639045.2016.1235186.
    [15] D.V.Sweet, Registry of Toxic Effects of Chemical Substances (RTECS), 1985-86 edition: User’s Guide, 1987.
    [16] F.Dehghani, N.Farhadian, S.Golmohammadzadeh, A.Biriaee, M.Ebrahimi, M.Karimi, Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug, Eur. J. Pharm. Sci. 96 (2017) 479–489. https://doi.org/10.1016/j.ejps.2016.09.033.
    [17] Y.Li, J.Song, N.Tian, J.Cai, M.Huang, Q.Xing, Y.Wang, C.Wu, H.Hu, Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution, Int. J. Pharm. 473 (2014) 316–325. https://doi.org/10.1016/j.ijpharm.2014.07.011.
    [18] P.Szumała, Structure of Microemulsion Formulated with Monoacylglycerols in the Presence of Polyols and Ethanol, J. Surfactants Deterg. 18 (2015) 97–106. https://doi.org/10.1007/s11743-014-1618-x.
    [19] S.K.Jha, R.Karki, D.P.Venkatesh, A.Geethalakshami, Formulation Development & Characterization of Microemulsion Drug delivery systems Containing Antiulcer drug, 3 (2011) 336–343.
    [20] E.Moghimipour, A.Salimi, M.Karami, S.Isazadeh, Preparation and characterization of dexamethasone microemulsion based on pseudoternary phase diagram, Jundishapur J. Nat. Pharm. Prod. 8 (2013) 105–112. https://doi.org/10.17795/jjnpp-9373.
    [21] P.Paximada, E.Tsouko, N.Kopsahelis, A.A.Koutinas, I.Mandala, Bacterial cellulose as stabilizer of o/w emulsions, Food Hydrocoll. 53 (2016) 225–232. https://doi.org/10.1016/j.foodhyd.2014.12.003.
    [22] H.Ougiya, K.Watanabe, Y.Morinaga, F.Yoshinaga, Emulsion-stabilizing Effect of Bacterial Cellulose, Biosci. Biotechnol. Biochem. 61 (1997) 1541–1545. https://doi.org/10.1271/bbb.61.1541.
    [23] I.Kalashnikova, H.Bizot, B.Cathala, I.Capron, New pickering emulsions stabilized by bacterial cellulose nanocrystals, Langmuir. 27 (2011) 7471–7479. https://doi.org/10.1021/la200971f.
    [24] Q.Zhou, J.Xu, S.Yang, Y.Xue, T.Zhang, J.Wang, C.Xue, The Effect of Various Antioxidants on the Degradation of O/W Microemulsions Containing Esterified Astaxanthins from Haematococcus pluvialis, J. Oleo Sci. 64 (2015) 515–525. https://doi.org/10.5650/jos.ess14264.
    [25] V.P.Nguyen, S.W.Kim, H.Kim, H.Kim, K.H.Seok, M.J.Jung, Y.C.Ahn, H.W.Kang, Biocompatible astaxanthin as a novel marineoriented agent for dual chemo-photothermal therapy, PLoS One. 12 (2017) 1–23. https://doi.org/10.1371/journal.pone.0174687.
    [26] A.K.M.Mofasser Hossain, M.A.Brennan, S.L.Mason, X.Guo, X.A.Zeng, C.S.Brennan, The effect of astaxanthin-rich microalgae “haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies, Foods. 6 (2017) 1–10. https://doi.org/10.3390/foods6080057.
    [27] F.Tamjidi, M.Shahedi, J.Varshosaz, A.Nasirpour, Design and characterization of astaxanthin-loaded nanostructured lipid carriers, Innov. Food Sci. Emerg. Technol. 26 (2014) 366–374. https://doi.org/10.1016/j.ifset.2014.06.012.
    [28] H.Rostamabadi, S.R.Falsafi, S.M.Jafari, Nanoencapsulation of carotenoids within lipid-based nanocarriers, J. Control. Release. 298 (2019) 38–67. https://doi.org/10.1016/j.jconrel.2019.02.005.
    [29] R.G.Fassett, J.S.Coombes, Astaxanthin: a potential therapeutic agent in cardiovascular disease., Mar. Drugs. 9 (2011) 447–65. https://doi.org/10.3390/md9030447.
    [30] K.A.Ku Aizuddin, M.A.Nurlina, A.H.Khuriah, C.S.Foo, M.M.R.Meor Mohd Affandi, Development of Astaxanthin-loaded biodegradable nanoparticles by nanoprecipitation method, Int. J. Pharm. Technol. 5 (2014) 5962–5972.
    [31] F.Zanoni, M.Vakarelova, G.Zoccatelli, Development and Characterization of Astaxanthin-Containing Whey Protein-Based Nanoparticles, Mar. Drugs. (2019) 1–17.
    [32] B.Eren, S.Tuncay Tanrıverdi, F.Aydın Köse, Ö.Özer, Antioxidant properties evaluation of topical astaxanthin formulations as anti-aging products, J. Cosmet. Dermatol. 18 (2019) 242–250. https://doi.org/10.1111/jocd.12665.
    [33] S.Hama, K.Takahashi, Y.Inai, K.Shiota, S.Ryota, A.Yamada, H.Tsuchiya, K.Kanamura, E.Yamashita, K.Kogure, Protective Effects of Topical Application of a Poorly Soluble Antioxidant Astaxanthin Liposomal Formulation on Ultraviolet-Induced Skin Damage, J. Pharm. Sci. 101 (2012) 2909–2916. https://doi.org/10.1002/jps.
    [34] R.Sun, N.Xia, Q.Xia, Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin, J. Dispers. Sci. Technol. 41 (2020) 1777–1788. https://doi.org/10.1080/01932691.2019.1635027.
    [35] M.H.Alkhatib, M.M.Aly, O.A.Saleh, H.M.Gashlan, Antibacterial activity of a microemulsion loaded with cephalosporin, Biol. 71 (2016) 748–756. https://doi.org/10.1515/biolog-2016-0105.
    [36] H.Zhang, Y.Cui, S.Zhu, F.Feng, X.Zheng, Characterization and antimicrobial activity of a pharmaceutical microemulsion, Int. J. Pharm. 395 (2010) 154–160. https://doi.org/10.1016/j.ijpharm.2010.05.022.
    [37] A.Rahdar, M.R.Hajinezhad, S.Nasri, H.Beyzaei, M.Barani, J.F.Trant, The synthesis of methotrexate-loaded F127 microemulsions and their in vivo toxicity in a rat model, J. Mol. Liq. 313 (2020) 113449. https://doi.org/10.1016/j.molliq.2020.113449.
    [38] E.Mitsou, V.Pletsa, G.T.Sotiroudis, P.Panine, M.Zoumpanioti, A.Xenakis, Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan, Colloids Surfaces B Biointerfaces. 190 (2020) 110974. https://doi.org/10.1016/j.colsurfb.2020.110974.
    [39] J.H.Schulman, W.Stoeckenius, L.M.Prince, Mechanism of formation and structure of micro emulsions by electron microscopy, J. Phys. Chem. 63 (1959) 1677–1680. https://doi.org/10.1021/j150580a027.
    [40] S.Talegaonkar, A.Azeem, F.Ahmad, R.Khar, S.Pathan, Z.Khan, Microemulsions: A Novel Approach to Enhanced Drug Delivery, Recent Pat. Drug Deliv. Formul. 2 (2008) 238–257. https://doi.org/10.2174/187221108786241679.
    [41] K.Čerpnjak, A.Zvonar, M.Gašperlin, F.Vrečer, Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs, Acta Pharm. 63 (2013) 427–445. https://doi.org/10.2478/acph-2013-0040.
    [42] H.N.Prajapati, D.M.Dalrymple, A.T.M.Serajuddin, A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development, Pharm. Res. 29 (2012) 285–305. https://doi.org/10.1007/s11095-011-0541-3.
    [43] P.A.Winsor, Hydrotropy, solubilisation and related Emulsification processes. Part I, Trans. Faraday Soc. 44 (1948) 376–398. https://doi.org/10.1039/tf9484400376.
    [44] M.Sanchez-Dominguez, C.Aubery, C.Solans, New Trends on the Synthesis of Inorganic Nanoparticles Using Microemulsions as Confined Reaction Media, Smart Nanoparticles Technol. (2012). https://doi.org/10.5772/33010.
    [45] H.Y.Karasulu, B.Karabulut, E.Göker, T.Güneri, F.Gabor, Controlled release of methotrexate from W/O microemulsion and its in vitro antitumor activity, Drug Deliv. 14 (2007) 225–233. https://doi.org/10.1080/10717540601067760.
    [46] N.N.Zulkifli, S.M.Mahmood, S.Akbari, A.A.A.Manap, I.Kechut, K.A.Elrais, Evaluation of new surfactants for enhanced oil recovery applications in high ‑ temperature reservoirs, J. Pet. Explor. Prod. Technol. 10 (2020) 283–296. https://doi.org/10.1007/s13202-019-0713-y.
    [47] N.Arpornpong, R.Padungpol, N.Khondee, C.Tongcumpou, S.Soonglerdsongpha, K.Suttiponparnit, E.Luepromchai, Formulation of Bio-Based Washing Agent and Its Application for Removal of Petroleum Hydrocarbons From Drill Cuttings Before Bioremediation, Front. Bioeng. Biotechnol. 8 (2020) 1–16. https://doi.org/10.3389/fbioe.2020.00961.
    [48] S.Calligaris, L.Manzocco, F.Valoppi, P.Comuzzo, M.C.Nicoli, Microemulsions as delivery systems of lemon oil and β-carotene into beverages: stability test under different light conditions, J. Sci. Food Agric. 99 (2019) 7016–7020. https://doi.org/10.1002/jsfa.9973.
    [49] S.Zhu, J.Li, Y.Liu, L.Chen, Formation and stability of Eucommia ulmoides Oliver seed oil-loaded inverse microemulsion formed by food-grade ingredients and its antioxidant activities, J. Food Sci. 85 (2020) 1489–1499. https://doi.org/10.1111/1750-3841.15103.
    [50] S.M.Ja’afar, R.M.Khalid, R.Othaman, W.N.A.W.Mokhtar, S.Ramli, Coconut Oil Based Microemulsion Formulations for Hair Care Product Application, Sains Malaysiana. 48 (2019) 599–605.
    [51] N.Pakkang, Y.Uraki, K.Koda, M.Nithitanakul, A.Charoensaeng, Preparation of Water-in-Oil Microemulsion from the Mixtures of Castor Oil and Sunflower Oil as Makeup Remover, J. Surfactants Deterg. 21 (2018) 809–816. https://doi.org/10.1002/jsde.12189.
    [52] R.Li, Y.Wang, Q.Yang, B.Lai, X.Zhou, M.Feng, Enhanced Stability of the Pharmacologically Active Lactone Form of 10-Hydroxycamptothecin by Self-Microemulsifying Drug Delivery Systems, AAPS PharmSciTech. 21 (2020) 1–10. https://doi.org/10.1208/s12249-020-01860-4.
    [53] N.Zainuddin, I.Ahmad, M.H.Zulfakar, H.Kargarzadeh, S.Ramli, Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin, Carbohydr. Polym. 254 (2021) 117401. https://doi.org/10.1016/j.carbpol.2020.117401.
    [54] V.R.Fonseca, P.J.Bhide, M.P.Joshi, Formulation, development and evaluation of etoricoxib nanosize microemulsion based gel for topical drug delivery, Indian J. Pharm. Educ. Res. 53 (2019) S571–S579. https://doi.org/10.5530/ijper.53.4s.152.
    [55] H.-G.Choi, B.-J.Park, J.O.Kim, Physicochemical Characterization of Rutaecarpine-Loaded Microemulsion System Han-Gon, Drug Dev. Ind. Pharm. 31 (2005) 639–643. https://doi.org/10.1080/03639040500216303.
    [56] Y.Lu, K.Wu, L.Li, Y.He, L.Cui, N.Liang, B.Mu, Characterization and evaluation of an oral microemulsion containing the antitumor diterpenoid compound ent-11alpha-hydroxy-15- oxo-kaur-16-en-19-oic-acid, Int. J. Nanomedicine. 8 (2013) 1879–1886. https://doi.org/10.2147/IJN.S42002.
    [57] M.F.Nazar, A.M.Khan, S.S.Shah, Microemulsion system with improved loading of piroxicam: A study of microstructure, AAPS PharmSciTech. 10 (2009) 1286–1294. https://doi.org/10.1208/s12249-009-9328-9.
    [58] A.F.Belhaj, K.A.Elraies, S.M.Mahmood, N.N.Zulkifli, S.Akbari, O.S.E.Hussien, The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review, J. Pet. Explor. Prod. Technol. 10 (2020) 125–137. https://doi.org/10.1007/s13202-019-0685-y.
    [59] V.Agrawal, R.Patel, M.Patel, K.Thanki, S.Mishra, Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies, Colloids Surfaces B Biointerfaces. 201 (2021) 111652. https://doi.org/10.1016/j.colsurfb.2021.111652.
    [60] H.Liu, J.Mei, Y.Xu, L.Tang, D.Chen, Y.Zhu, S.Huang, T.J.Webster, H.Ding, Improving the oral absorption of nintedanib by a self-microemulsion drug delivery system: Preparation and in vitro/in vivo evaluation, Int. J. Nanomedicine. 14 (2019) 8739–8751. https://doi.org/10.2147/IJN.S224044.
    [61] N.Laothaweerungsawat, W.Neimkhum, S.Anuchapreeda, J.Sirithunyalug, W.Chaiyana, Transdermal delivery enhancement of carvacrol from Origanum vulgare L. essential oil by microemulsion, Int. J. Pharm. 579 (2020) 119052. https://doi.org/10.1016/j.ijpharm.2020.119052.
    [62] A.Azeem, M.Rizwan, F.Ahmad, Z.Khan, R.Khar, M.Aqil, S.Talegaonkar, Emerging Role of Microemulsions in Cosmetics, Recent Pat. Drug Deliv. Formul. 2 (2008) 275–289. https://doi.org/10.2174/187221108786241624.
    [63] P.Boonme, Applications of microemulsions in cosmetics, J. Cosmet. Dermatol. 6 (2007) 223–228. https://doi.org/10.17576/mjas-2017-2106-23.
    [64] M.B.Delgado-Charro, G.Iglesias-Vilas, J.Blanco-Méndez, M.A.López-Quintela, J.P.Marty, R.H.Guy, Delivery of a hydrophilic solute through the skin from novel microemulsion systems, Eur. J. Pharm. Biopharm. 43 (1997) 37–42. https://doi.org/10.1016/S0939-6411(96)00016-1.
    [65] S.P.Callender, J.A.Mathews, K.Kobernyk, S.D.Wettig, Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery, Int. J. Pharm. 526 (2017) 425–442. https://doi.org/10.1016/j.ijpharm.2017.05.005.
    [66] A.K.Sharma, T.Garg, A.K.Goyal, G.Rath, Role of microemuslsions in advanced drug delivery, Artif. Cells, Nanomedicine Biotechnol. 44 (2016) 1177–1185. https://doi.org/10.3109/21691401.2015.1012261.
    [67] Y.Yuan, X.Che, M.Zhao, Y.Wang, Y.Liu, A.Schwendeman, S.Li, Development of cyclosporine A microemulsion for parenteral delivery, J. Microencapsul. 32 (2015) 273–280. https://doi.org/10.3109/02652048.2015.1010461.
    [68] K.Jadhav, I.Shaikh, K.Ambade, V.Kadam, Applications of Microemulsion Based Drug Delivery System, Curr. Drug Deliv. 3 (2006) 267–273. https://doi.org/10.2174/156720106777731118.
    [69] C.H.Salamanca, A.Barrera-Ocampo, J.C.Lasso, N.Camacho, C.J.Yarce, Franz diffusion cell approach for pre-formulation characterisation of ketoprofen semi-solid dosage forms, Pharmaceutics. 10 (2018) 1–10. https://doi.org/10.3390/pharmaceutics10030148.
    [70] B.Hajjar, K.I.Zier, N.Khalid, S.Azarmi, R.Löbenberg, Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium, J. Pharm. Investig. 48 (2018) 351–362. https://doi.org/10.1007/s40005-017-0327-7.
    [71] W.Wu, Y.Wang, L.Que, Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system, Eur. J. Pharm. Biopharm. 63 (2006) 288–294. https://doi.org/10.1016/j.ejpb.2005.12.005.
    [72] M.Kotmakchiev, G.Kantarci, V.B.Çetinta̧s, G.Ertan, Cytotoxicity of a novel oil/water microemulsion system loaded with mitomycin-C in in vitro lung cancer models, Drug Dev. Res. 73 (2012) 185–195. https://doi.org/10.1002/ddr.21007.
    [73] N.Mori Cortés, G.Lorenzo, A.N.Califano, Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis, Food Res. Int. 107 (2018) 41–47. https://doi.org/10.1016/j.foodres.2018.01.073.
    [74] Q.Zhang, K.Guo, X.Wang, B.Huang, Z.Lin, Z.Cai, Optimization of lipid materials in the formulation of S-carvedilol self-microemulsifying drug-delivery systems, Drug Dev. Ind. Pharm. 0 (2020) 1–10. https://doi.org/10.1080/03639045.2020.1810265.
    [75] V.U.Kannamangalam, V.Sadineni, S.Sushant, S.R.S, Enhancement of loading and oral bioavailability of curcumin loaded self- microemulsifying lipid carriers using Curcuma oleoresins, Drug Dev. Ind. Pharm. 0 (2020) 000. https://doi.org/10.1080/03639045.2020.1762201.
    [76] K.R.Pawar, R.J.Babu, Lipid materials for topical and transdermal delivery of nanoemulsions, Crit. Rev. Ther. Drug Carrier Syst. 31 (2014) 429–458. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2014010663.
    [77] S.Muchtar, M.Abdulrazik, J.Frucht-pery, S.Benita, Ex-vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea, 44 (1997) 55–64.
    [78] J.S.Franklyne, A.Nadarajan, A.Ebenazer, N.Tiwari, N.Chandrasekaran, PREPARATION AND CHARACTERIZATION OF EDIBLE OIL NANOEMULSIONS FOR ENHANCED STABILITY AND ORAL DELIVERY OF CURCUMIN, 10 (2018).
    [79] N.Ahmad, R.Ahmad, A.Al-qudaihi, E.Alaseel, Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative e ff ects in wound healing and the treatment of in fl ammation, (2019) 20192–20206. https://doi.org/10.1039/c9ra03102b.
    [80] M.Takenaka, T.Ohkubo, H.Okadome, I.Sotome, T.Itoh, S.Isobe, Effective extraction of curcuminoids by grinding turmeric (Curcuma longa) with medium-chain triacylglycerols, Food Sci. Technol. Res. 19 (2013) 655–659. https://doi.org/10.3136/fstr.19.655.
    [81] M.Ahuja, S.K.Sharma, D.K.Majumdar, In vitro corneal permeation of diclofenac from oil drops, Yakugaku Zasshi. 127 (2007) 1739–1745. https://doi.org/10.1248/yakushi.127.1739.
    [82] Masthan Rao CH.N.V.S, R.B.Reddy, R.K.P, Formulation Development and Evaluation of Diclofenac Sodium Microemulsion, Indo Am. J. Pharm. Sci. 2 (2015) 1673–1688.
    [83] H.L.Halliday, Surfactants: Past, present and future, J. Perinatol. 28 (2008) 47–56. https://doi.org/10.1038/jp.2008.50.
    [84] D.Attwood, A.T.Florence, FASTtrack: Physical Pharmacy, 2nd Revise, Pharmaceutical Press, 2012.
    [85] D.Myers, Surfactant science and technology, John Wiley & Sons, Inc., 2006.
    [86] N.J.Koehl, R.Holm, M.Kuentz, V.Jannin, B.T.Griffin, Exploring the Impact of Surfactant Type and Digestion: Highly Digestible Surfactants Improve Oral Bioavailability of Nilotinib, Mol. Pharm. 17 (2020) 3202–3213. https://doi.org/10.1021/acs.molpharmaceut.0c00305.
    [87] T.A.Sonia, C.P.Sharma, Lipids and inorganic nanoparticles in oral insulin delivery, 2014. https://doi.org/10.1533/9781908818683.219.
    [88] J.Misík, E.Vodáková, R.Pavlíkova, J.Cabal, L.Novotný, K.Kuča, Acute Toxicity of Surfactants and Detergent-Based Decontaminants in Mice and Rats, Mil. Med. Sci. Lett. 81 (2012) 171–176. https://doi.org/10.31482/mmsl.2012.024.
    [89] D.W.Sullivan, S.C.Gad, M.Julien, A review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient, Food Chem. Toxicol. 72 (2014) 40–50. https://doi.org/10.1016/j.fct.2014.06.028.
    [90] Committee for Veterinary Medicinal Products, Polyoxyl castor oil polyoxyl hydrogenated castor oil, 1999.
    [91] M.M.Fiume, B.Heldreth, Safety Assessment of Dialkyl Sulfosuccinate Salts as Used in Cosmetics, 2014.
    [92] F.S.Commission, Evaluation Report of Food Additives Polysorbates (Polysorbates 20, 60, 65 and 80), 2007. https://www.fsc.go.jp/english/evaluationreports/foodadditive/polysorbate_report.pdf.
    [93] A.G.Ellis, N.A.Crinis, L.K.Webster, Inhibition of etoposide elimination in the isolated perfused rat liver by Cremophor EL and Tween 80, Cancer Chemother. Pharmacol. 38 (1996) 81–87. https://doi.org/10.1007/s002800050451.
    [94] F.Seeballuck, E.Lawless, M.B.Ashford, C.M.O’Driscoll, Stimulation of triglyceride-rich lipoprotein secretion by polysorbate 80: In vitro and in vivo correlation using caco-2 cells and a cannulated rat intestinal lymphatic model, Pharm. Res. 21 (2004) 2320–2326. https://doi.org/10.1007/s11095-004-7684-4.
    [95] M.L.Lind, J.Jacobsen, R.Holm, A.Müllertz, Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: The influence of polysorbate 60 and 80, Eur. J. Pharm. Sci. 35 (2008) 211–218. https://doi.org/10.1016/j.ejps.2008.07.003.
    [96] A.R.Ismail, W.Y.Wan Nurul Fatihah, D.Rusli, A.H.Hazimah, Effect of glycerol derived co-surfactant on the ternary phase behaviour of palm-based microemulsions, J. Oil Palm Res. 26 (2014) 240–250.
    [97] R.Cavalli, E.Marengo, O.Caputo, E.Ugazio, M.R.Gasco, The effect of alcohols with different structures on the formation of warm O/W microemulsions, J. Dispers. Sci. Technol. 17 (1996) 717–734. https://doi.org/10.1080/01932699608943535.
    [98] H.Zhang, F.Feng, J.Li, X.Zhan, H.Wei, H.Li, H.Wang, X.Zheng, Formulation of food-grade microemulsions with glycerol monolaurate: Effects of short-chain alcohols, polyols, salts and nonionic surfactants, Eur. Food Res. Technol. 226 (2008) 613–619. https://doi.org/10.1007/s00217-007-0606-z.
    [99] N.J.Kale, L.V.Allen, Studies on microemulsions using Brij 96 as surfactant and glycerin, ethylene glycol and propylene glycol as cosurfactants, Int. J. Pharm. 57 (1989) 87–93. https://doi.org/10.1016/0378-5173(89)90296-2.
    [100] G.F.D.Ferreira, D.R.Q.Souza, R.Lima, A.K.C.L.Lobato, A.C.M.Silva, L.C.L.Santos, Novel glycerin-based microemulsion formulation for enhanced oil recovery, J. Pet. Sci. Eng. 167 (2018) 674–681. https://doi.org/10.1016/j.petrol.2018.04.048.
    [101] L.Deng, F.Que, H.Wei, G.Xu, X.Dong, H.Zhang, Solubilization of tea seed oil in a food-grade water-dilutable microemulsion, PLoS One. 10 (2015) 1–12. https://doi.org/10.1371/journal.pone.0127291.
    [102] L.Deng, M.Taxipalati, P.Sun, F.Que, H.Zhang, Phase behavior, microstructural transition, antimicrobial and antioxidant activities of a water-dilutable thymol microemulsion, Colloids Surfaces B Biointerfaces. 136 (2015) 859–866. https://doi.org/10.1016/j.colsurfb.2015.10.031.
    [103] Y.Yuan, S. mingLi, F. kuiMo, D. fangZhong, Investigation of microemulsion system for transdermal delivery of meloxicam, Int. J. Pharm. 321 (2006) 117–123. https://doi.org/10.1016/j.ijpharm.2006.06.021.
    [104] S.U.Pickering, CXCVI.-Emulsions, J. Chem. Soc. Trans. 91 (1907) 2001–2021.
    [105] W.Ramsden, Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)—preliminary account., Proc. R. Soc. London. (1904) 156–164.
    [106] D.G.Ortiz, C.Pochat-Bohatier, J.Cambedouzou, M.Bechelany, P.Miele, Current Trends in Pickering Emulsions : Particle Morphology and Applications, Engineering. 6 (2020) 468–482. https://doi.org/10.1016/j.eng.2019.08.017.
    [107] J.Otero, S.Meeker, P.S.Clegg, Compositional ripening of particle-stabilized drops in a three-liquid system, Soft Matter. 14 (2018) 3783–3790. https://doi.org/10.1039/c7sm02502e.
    [108] R.Zheng, B.P.Binks, Z.Cui, Pickering Emulsions of Hydrophilic Silica Particles and Symmetrical Organic Electrolytes, Langmuir. 36 (2020) 4619–4629. https://doi.org/10.1021/acs.langmuir.0c00261.
    [109] L.Leclercq, J.Tessier, G.Douyère, V.Nardello-Rataj, A.R.Schmitzer, Phytochemical- and Cyclodextrin-Based Pickering Emulsions: Natural Potentiators of Antibacterial, Antifungal, and Antibiofilm Activity, Langmuir. 36 (2020) 4317–4323. https://doi.org/10.1021/acs.langmuir.0c00314.
    [110] H.Taguchi, H.Tanaka, K.Hashizaki, Y.Saito, M.Fujii, Application of pickering emulsion with cyclodextrin as an emulsifier to a transdermal drug delivery vehicle, Biol. Pharm. Bull. 42 (2019) 116–122. https://doi.org/10.1248/bpb.b18-00711.
    [111] M.Inoue, K.Hashizaki, H.Taguchi, Y.Saito, Emulsion preparation using β-cyclodextrin and its derivatives acting as an emulsifier, Chem. Pharm. Bull. 56 (2008) 1335–1337. https://doi.org/10.1248/cpb.56.1335.
    [112] P.A.Demina, T.V.Bukreeva, Pickering Emulsion Stabilized by Commercial Titanium Dioxide Nanoparticles in the Form of Rutile and Anatase, Nanotechnologies Russ. 13 (2018) 425–429. https://doi.org/10.1134/S1995078018040043.
    [113] B.Lyu, H.DiWang, J.Z.Ma, D.G.Gao, P.Jin, Preparation and application of castor oil/nano-TiO2 composite fatliquoring agent via a Pickering emulsion method, J. Clean. Prod. 126 (2016) 711–716. https://doi.org/10.1016/j.jclepro.2016.02.099.
    [114] F.Zhang, L.Liu, X.Tan, X.Sang, J.Zhang, C.Liu, B.Zhang, B.Han, G.Yang, Pickering emulsions stabilized by a metal-organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites, Soft Matter. 13 (2017) 7365–7370. https://doi.org/10.1039/c7sm01567d.
    [115] R.Sabouni, H.G.Gomaa, Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen, Soft Matter. 11 (2015) 4507–4516. https://doi.org/10.1039/c5sm00922g.
    [116] H.Zhu, Q.Zhang, S.Zhu, Assembly of a Metal–Organic Framework into 3 D Hierarchical Porous Monoliths Using a Pickering High Internal Phase Emulsion Template, Chem. - A Eur. J. 22 (2016) 8751–8755. https://doi.org/10.1002/chem.201600313.
    [117] Z.Hu, H.S.Marway, H.Kasem, R.Pelton, E.D.Cranston, Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions, ACS Macro Lett. 5 (2016) 185–189. https://doi.org/10.1021/acsmacrolett.5b00919.
    [118] Z.Hu, S.Ballinger, R.Pelton, E.D.Cranston, Surfactant-enhanced cellulose nanocrystal Pickering emulsions, J. Colloid Interface Sci. 439 (2015) 139–148. https://doi.org/10.1016/j.jcis.2014.10.034.
    [119] S.Fujisawa, E.Togawa, K.Kuroda, Nanocellulose-stabilized Pickering emulsions and their applications, Sci. Technol. Adv. Mater. 18 (2017) 959–971. https://doi.org/10.1080/14686996.2017.1401423.
    [120] I.Kalashnikova, H.Bizot, B.Cathala, I.Capron, Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface, Biomacromolecules. 13 (2012) 267–275. https://doi.org/10.1021/bm201599j.
    [121] A.L.R.Costa, A.Gomes, H.Tibolla, F.C.Menegalli, R.L.Cunha, Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes, Carbohydr. Polym. 194 (2018) 122–131. https://doi.org/10.1016/j.carbpol.2018.04.001.
    [122] L.Bai, S.Lv, W.Xiang, S.Huan, D.J.McClements, O.J.Rojas, Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion, Food Hydrocoll. 96 (2019) 709–716. https://doi.org/10.1016/j.foodhyd.2019.04.039.
    [123] F.Asabuwa Ngwabebhoh, S.Ilkar Erdagi, U.Yildiz, Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities, Carbohydr. Polym. 201 (2018) 317–328. https://doi.org/10.1016/j.carbpol.2018.08.079.
    [124] G.R.Souza de Araujo, L.deOliveira Porfírio, L.A.Santos Silva, D.Gomes Santana, P.Ferreira Barbosa, C.Pereira dos Santos, N.Narain, V.H.Vitorino Sarmento, R.deSouza Nunes, E.Ting, A.A.Moreira Lira, In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine, Colloids Surfaces B Biointerfaces. 188 (2020) 110739. https://doi.org/10.1016/j.colsurfb.2019.110739.
    [125] C.Gunarto, H.Hsu, A.W.Go, S.P.Santoso, C.T.Truong, Y.-H.Ju, A.E.Angkawijaya, Effect of cellulose nanocrystal supplementation on the stability of castor oil microemulsion, J. Mol. Liq. 325 (2021) 115181. https://doi.org/10.1016/j.molliq.2020.115181.
    [126] H.Yan, X.Chen, M.Feng, Z.Shi, W.Zhang, Y.Wang, C.Ke, Q.Lin, Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery, Colloids Surfaces B Biointerfaces. 177 (2019) 112–120. https://doi.org/10.1016/j.colsurfb.2019.01.057.
    [127] J.Frelichowska, M.A.Bolzinger, Y.Chevalier, Effects of solid particle content on properties of o/w Pickering emulsions, J. Colloid Interface Sci. 351 (2010) 348–356. https://doi.org/10.1016/j.jcis.2010.08.019.
    [128] R.Yehia, R.M.Hathout, D.A.Attia, M.M.Elmazar, N.D.Mortada, Anti-tumor efficacy of an integrated methyl dihydrojasmonate transdermal microemulsion system targeting breast cancer cells: In vitro and in vivo studies, Colloids Surfaces B Biointerfaces. 155 (2017) 512–521. https://doi.org/10.1016/j.colsurfb.2017.04.031.
    [129] D.Qu, M.Guo, Y.Qin, L.Wang, B.Zong, Y.Chen, Y.Chen, A multicomponent microemulsion using rational combination strategy improves lung cancer treatment through synergistic effects and deep tumor penetration, Drug Deliv. 24 (2017) 1179–1190. https://doi.org/10.1080/10717544.2017.1365394.
    [130] W.Chaiyana, P.Leelapornpisid, R.Phongpradist, K.Kiattisin, Enhancement of antioxidant and skin moisturizing effects of olive oil by incorporation into microemulsions, Nanomater. Nanotechnol. 6 (2016) 1–8. https://doi.org/10.1177/1847980416669488.
    [131] R.Su, L.Yang, Y.Wang, S.Yu, Y.Guo, J.Deng, Q.Zhao, X.Jin, Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of ceramide IIIB, Int. J. Nanomedicine. 12 (2017) 5203–5221. https://doi.org/10.2147/IJN.S139975.
    [132] N.Khumpirapang, S.Pikulkaew, A.Müllertz, T.Rades, S.Okonogi, Self-microemulsifying drug delivery system and nanoemulsion for enhancing aqueous miscibility of Alpinia galanga oil, PLoS One. 12 (2017) 1–18. https://doi.org/10.1371/journal.pone.0188848.
    [133] B.Subramaniam, Z.H.Siddik, N.H.Nagoor, Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations, J. Nanoparticle Res. 22 (2020). https://doi.org/10.1007/s11051-020-04848-0.
    [134] F.A.Maulvi, L.V.Pillai, K.P.Patel, A.R.Desai, M.R.Shukla, D.T.Desai, H.P.Patel, K.M.Ranch, S.A.Shah, D.O.Shah, Lidocaine tripotassium phosphate complex laden microemulsion for prolonged local anaesthesia: In vitro and in vivo studies, Colloids Surfaces B Biointerfaces. 185 (2020) 110632. https://doi.org/10.1016/j.colsurfb.2019.110632.
    [135] H.Tandel, P.Patel, P.Jani, Preparation and study of efavirenz microemulsion drug delivery system for enhancement of bioavailability, Eur. J. Pharm. Med. Res. 2 (2015) 1156–1174.
    [136] V.B.Patravale, A.A.Date, R.M.Kulkarni, Nanosuspensions: a promising drug delivery strategy, J. Pharm. Pharmacol. 56 (2010) 827–840. https://doi.org/10.1211/0022357023691.
    [137] F.Dehghani, N.Farhadian, S.Golmohammadzadeh, A.Biriaee, M.Ebrahimi, M.Karimi, Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug, Eur. J. Pharm. Sci. 96 (2017) 479–489. https://doi.org/10.1016/j.ejps.2016.09.033.
    [138] H.C.Vadlamudi, R.P.Yalavarthi, M.B.Rao, C.Sundaresan, Insights of Microemulsions : A Thermodynamic Comprehension, Jordan J. Pharm. Sci. 10 (2017) 23–40. https://doi.org/10.12816/0039539.
    [139] N.H.M.Nor, M.A.M.Shafri, F.Mohamed, Preparation and Characterization of Nigella Sativa Microemulsion, Int. J. Pharm. Pharm. Sci. 6 (2014) 485–489.
    [140] R.Elfiyani, A.Amalia, S.Y.Pratama, Effect of using the combination of tween 80 and ethanol on the forming and physical stability of microemulsion of eucalyptus oil as antibacterial, J. Young Pharm. 9 (2017) S1–S4. https://doi.org/10.5530/jyp.2017.1s.1.
    [141] H.Chen, Q.Zhong, Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend, Food Chem. 174 (2015) 630–636. https://doi.org/10.1016/j.foodchem.2014.11.116.
    [142] F.M.Hashem, D.S.Shaker, M.K.Ghorab, M.Nasr, A.Ismail, Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery, AAPS PharmSciTech. 12 (2011) 879–886. https://doi.org/10.1208/s12249-011-9653-7.
    [143] E.Gundogdu, I.G.Alvarez, E.Karasulu, Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies., Int. J. Nanomedicine. 6 (2011) 1631–1640. https://doi.org/10.2147/ijn.s22673.
    [144] K.shinoda, B.Lindman, Organized Surfactant Systems: Microemulsions, Langmuir. 3 (1987) 135–149. https://doi.org/10.1021/la00074a001.
    [145] D.Xu, J.Zhang, Y.Cao, J.Wang, J.Xiao, Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion, Lwt. 66 (2016) 590–597. https://doi.org/10.1016/j.lwt.2015.11.002.
    [146] S.Soradech, P.Kusolkumbot, S.Thubthimthed, Development and characterization of microemulsions containing Tiliacora triandra Diels as an active ingredient for antioxidant and melanogenesis stimulating activities, J. Appl. Pharm. Sci. 8 (2018) 46–54. https://doi.org/10.7324/JAPS.2018.8307.
    [147] W.Chaiyana, P.Leelapornpisid, J.Jakmunee, C.Korsamphan, Antioxidant and moisturizing effect of Camellia assamica seed oil and its development into microemulsion, Cosmetics. 5 (2018). https://doi.org/10.3390/COSMETICS5030040.
    [148] N.Patel, B.Baby, K.Ramesh, P.Rao, S.Rajarajan, Preparation and In-Vitro Evaluation of Micro Emulsion of Anti-Hypertensive Drug: Valsartan, Int. J. Pharm. Sci. Res. 3 (2012) 3493–3501.
    [149] S.E.Flores-Villaseñor, R.D.Peralta-Rodríguez, F.Padilla-Vaca, H.I.Meléndez-Ortiz, J.C.Ramirez-Contreras, B.Franco, Preparation of Peppermint Oil-Based Nanodevices Loaded with Paclitaxel: Cytotoxic and Apoptosis Studies in HeLa Cells, AAPS PharmSciTech. 20 (2019).
    [150] I.Sopyan, D.Gozali, E.Paramudya, Formulation and Stability Testing of Microemulsion Griseovulfin, Indones. J. Pharm. 2 (2020) 32. https://doi.org/10.24198/idjp.v2i2.27574.
    [151] S.K.Mehta, G.Kaur, K.K.Bhasin, Analysis of Tween based microemulsion in the presence of TB drug rifampicin, Colloids Surfaces B Biointerfaces. 60 (2007) 95–104. https://doi.org/10.1016/j.colsurfb.2007.06.012.
    [152] M.M.Rahman, M.B.Islam, M.Biswas, A.H.M.Khurshid Alam, In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh, BMC Res. Notes. 8 (2015) 1–9. https://doi.org/10.1186/s13104-015-1618-6.
    [153] A.Froelich, T.Osmałek, Microemulsions as Antioxidant Carriers, in: M.A.Aboudzadeh (Ed.), Emuls. Encapsulation Antioxidants, 2020: pp. 197–224.
    [154] H.Tang, S.Xiang, X.Li, J.Zhou, C.Kuang, Preparation and in vitro performance evaluation of resveratrol for oral self-microemulsion, PLoS One. 14 (2019) 1–17. https://doi.org/10.1371/journal.pone.0214544.
    [155] M.Gosenca, A.Obreza, S.Pečar, M.Gašperlin, A new approach for increasing ascorbyl palmitate stability by addition of non-irritant co-antioxidant, AAPS PharmSciTech. 11 (2010) 1485–1492. https://doi.org/10.1208/s12249-010-9507-8.
    [156] M.Osanloo, N.Jamali, A.Nematollahi, Improving the oxidative stability of virgin olive oil using microformulated vitamin-C, Food Sci. Nutr. (2021) 1–10. https://doi.org/10.1002/fsn3.2332.
    [157] Y.Fan, L.Ma, W.Zhang, J.Wang, Y.Chen, Y.Gao, W.Feng, L.Zhong, X.Song, The design of propolis flavone microemulsion and its effect on enhancing the immunity and antioxidant activity in mice, Int. J. Biol. Macromol. 65 (2014) 200–207. https://doi.org/10.1016/j.ijbiomac.2014.01.041.
    [158] S.Calligaris, F.Valoppi, L.Barba, L.Pizzale, M.Anese, L.Conte, M.C.Nicoli, Development of Transparent Curcumin Loaded Microemulsions by Phase Inversion Temperature (PIT) Method: Effect of Lipid Type and Physical State on Curcumin Stability, Food Biophys. 12 (2017) 45–51. https://doi.org/10.1007/s11483-016-9461-4.
    [159] N.S.Srivastava, R.A.K.Srivastava, Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells, Phytomedicine. 52 (2019) 117–128. https://doi.org/10.1016/j.phymed.2018.09.224.
    [160] E.A.Wilhelm, A.G.Vogt, A.S.Reis, M.P.Pinz, J.F.deSouza, S.E.Haas, A.A.M.Pereira, A.R.Fajardo, C.Luchese, The efficacy of microemulsion-based delivery to improve vitamin E properties: evaluation of the antinociceptive, antioxidant, antidepressant- and anxiolytic-like activities in mice, J. Pharm. Pharmacol. 70 (2018) 1723–1732. https://doi.org/10.1111/jphp.13018.
    [161] I.S.I.Al-Adham, E.Khalil, N.D.Al-Hmoud, M.Kierans, P.J.Collier, Microemulsions are membrane-active, antimicrobial,self-preserving systems, J. Appl. Microbiol. 89 (2000) 32–39.
    [162] J.S.Franklyne, A.Mukherjee, N.Chandrasekaran, Essential oil micro- and nanoemulsions: promising roles in antimicrobial therapy targeting human pathogens, Lett. Appl. Microbiol. 63 (2016) 322–334. https://doi.org/10.1111/lam.12631.
    [163] C.A.Batt, Escherichia coli, in: Encycl. Food Microbiol. Second Ed., Second Edi, Elsevier, 2014: pp. 688–694. https://doi.org/10.1016/B978-0-12-384730-0.00100-2.
    [164] X.Fu, F.Feng, B.Huang, Physicochemical characterization and evaluation of a microemulsion system for antimicrobial activity of glycerol monolaurate, Int. J. Pharm. 321 (2006) 171–175. https://doi.org/10.1016/j.ijpharm.2006.05.019.
    [165] D.Gould, A.Chamberlaine, Staphylococcus aureus: a review of the literature, J. Clin. Nurs. 4 (1995) 5–12.
    [166] V.Volpe, M.N.Giacomodonato, D.O.Sordelli, M.Insausti, F.R.Buzzola, M.Grünhut, Ciprofloxacin loaded o/w microemulsion against Staphylococcus aureus. Analytical and biological studies for topical and intranasal administration, J. Drug Deliv. Sci. Technol. 57 (2020) 101705. https://doi.org/10.1016/j.jddst.2020.101705.
    [167] A.Gnanamani, P.Hariharan, M.Paul-Satyaseela, Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach, Front. Staphylococcus Aureus. (2017). https://doi.org/10.5772/67338.
    [168] T.Chhibber, S.Wadhwa, P.Chadha, G.Sharma, O.P.Katare, Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection, J. Drug Target. 23 (2015) 943–952. https://doi.org/10.3109/1061186X.2015.1048518.
    [169] P.Jantrawut, K.Boonsermsukcharoen, K.Thipnan, T.Chaiwarit, K.M.Hwang, E.S.Park, Enhancement of antibacterial activity of orange oil in pectin thin film by microemulsion, Nanomaterials. 8 (2018) 1–12. https://doi.org/10.3390/nano8070545.
    [170] Ö.S.Aslantürk, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, 2018. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
    [171] L.Peng, B.Wang, P.Ren, Reduction of MTT by flavonoids in the absence of cells, Colloids Surfaces B Biointerfaces. 45 (2005) 108–111. https://doi.org/10.1016/j.colsurfb.2005.07.014.
    [172] J.Pietkiewicz, K.Zielińska, J.Saczko, J.Kulbacka, M.Majkowski, K.A.Wilk, New approach to hydrophobic cyanine-type photosensitizer delivery using polymeric oil-cored nanocarriers: Hemolytic activity, in vitro cytotoxicity and localization in cancer cells, Eur. J. Pharm. Sci. 39 (2010) 322–335. https://doi.org/10.1016/j.ejps.2009.12.012.
    [173] H.Y.Lin, J.L.Thomas, H.W.Chen, C.M.Shen, W.J.Yang, M.H.Lee, In vitro suppression of oral squamous cell carcinoma growth by ultrasound-mediated delivery of curcumin microemulsions, Int. J. Nanomedicine. 7 (2012) 941–951. https://doi.org/10.2147/IJN.S28510.
    [174] T.Benbow, J.Campbell, Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): a literature review, Drug Dev. Ind. Pharm. 45 (2019) 1849–1855. https://doi.org/10.1080/03639045.2019.1680996.
    [175] J.Malakar, S.O.Sen, A.K.Nayak, K.K.Sen, Development and Evaluation of Microemulsions for Transdermal Delivery of Insulin, ISRN Pharm. 2011 (2011) 1–7. https://doi.org/10.5402/2011/780150.
    [176] M.Boche, V.Pokharkar, Microemulsion assisted transdermal delivery of a hydrophilic anti-osteoporotic drug: Formulation, in vivo pharmacokinetic studies, in vitro cell osteogenic activity, J. Appl. Pharm. Sci. 10 (2020) 8–19. https://doi.org/10.7324/JAPS.2020.10802.
    [177] N.Gautam, K.Kesavan, Development of microemulsions for ocular delivery, Ther. Deliv. 8 (2017) 313–330. https://doi.org/10.4155/tde-2016-0076.
    [178] Y.M.Yin, F.DeCui, C.F.Mu, M.K.Choi, J.S.Kim, S.J.Chung, C.K.Shim, D.D.Kim, Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation, J. Control. Release. 140 (2009) 86–94. https://doi.org/10.1016/j.jconrel.2009.08.015.
    [179] J.Qi, J.Zhuang, W.Wu, Y.Lu, Y.Song, Z.Zhang, J.Jia, Q.Ping, Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A., Int. J. Nanomedicine. 6 (2011) 985–991. https://doi.org/10.2147/ijn.s18821.
    [180] A.Kogan, E.Kesselman, D.Danino, A.Aserin, N.Garti, Viability and permeability across Caco-2 cells of CBZ solubilized in fully dilutable microemulsions, Colloids Surfaces B Biointerfaces. 66 (2008) 1–12. https://doi.org/10.1016/j.colsurfb.2008.05.006.
    [181] R.R.Ambati, P.S.Moi, S.Ravi, R.G.Aswathanarayana, Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications - A review, Mar. Drugs. 12 (2014) 128–152. https://doi.org/10.3390/md12010128.
    [182] M.Sztretye, B.Dienes, M.Gönczi, T.Czirják, L.Csernoch, L.Dux, P.Szentesi, A.Keller-Pintér, Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging, Oxid. Med. Cell. Longev. 2019 (2019). https://doi.org/10.1155/2019/3849692.
    [183] Y.M.A.Naguib, Antioxidant activities of astaxanthin and related carotenoids, J. Agric. Food Chem. 48 (2000) 1150–1154. https://doi.org/10.1021/jf991106k.
    [184] D.F.Tirado, I.Palazzo, M.Scognamiglio, L.Calvo, G.DellaPorta, E.Reverchon, Astaxanthin encapsulation in ethyl cellulose carriers by continuous supercritical emulsions extraction: A study on particle size, encapsulation efficiency, release profile and antioxidant activity, J. Supercrit. Fluids. 150 (2019) 128–136. https://doi.org/10.1016/j.supflu.2019.04.017.
    [185] J.Yang, Q.Zhou, Z.Huang, Z.Gu, L.Cheng, L.Qiu, Y.Hong, Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers, Food Hydrocoll. 119 (2021) 106837. https://doi.org/10.1016/j.foodhyd.2021.106837.
    [186] X.Mao, Y.Tian, R.Sun, Q.Wang, J.Huang, Q.Xia, Stability study and in vitro evaluation of astaxanthin nanostructured lipid carriers in food industry, Integr. Ferroelectr. 200 (2019) 208–216. https://doi.org/10.1080/10584587.2019.1592626.
    [187] L.Pan, H.Wang, K.Gu, Nanoliposomes as vehicles for astaxanthin: Characterization, in vitro release evaluation and structure, Molecules. 23 (2018). https://doi.org/10.3390/molecules23112822.
    [188] J.Gu, Y.Chen, L.Tong, X.Wang, D.Yu, H.Wu, Astaxanthin-loaded polymer-lipid hybrid nanoparticles (ATX-LPN): Assessment of potential otoprotective effects, J. Nanobiotechnology. 18 (2020) 1–17. https://doi.org/10.1186/s12951-020-00600-x.
    [189] A.Fratter, D.Biagi, A.F.G.Cicero, Sublingual delivery of astaxanthin through a novel ascorbyl palmitate-based nanoemulsion: Preliminary data, Mar. Drugs. 17 (2019). https://doi.org/10.3390/md17090508.
    [190] A.A.Deshpande, C.T.Rhodes, N.H.Shah, A.W.Malick, Controlled-release drug delivery systems for prolonged gastric residence: An overview, Drug Dev. Ind. Pharm. 22 (1996) 531–539. https://doi.org/10.3109/03639049609108355.
    [191] M.Bruschi, Main mechanisms to control the drug release, in: Strateg. to Modify Drug Release from Pharm. Syst., 1st Editio, Woodhead Publishing, 2015: pp. 37–62. https://doi.org/10.1016/b978-0-08-100092-2.00004-7.
    [192] S.D’Souza, A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms, Adv. Pharm. 2014 (2014) 1–12. https://doi.org/10.1155/2014/304757.
    [193] B.Balzus, M.Colombo, F.F.Sahle, G.Zoubari, S.Staufenbiel, R.Bodmeier, Comparison of different in vitro release methods used to investigate nanocarriers intended for dermal application, Int. J. Pharm. 513 (2016) 247–254. https://doi.org/10.1016/j.ijpharm.2016.09.033.
    [194] R.Nabiee, B.Dubois, L.Green, A.Sharma, S.F.Wong, H.M.Aliabadi, In vitro and ex-vivo evaluation of topical formulations designed to minimize transdermal absorption of Vitamin K1, PLoS One. 13 (2018) 1–14. https://doi.org/10.1371/journal.pone.0204531.
    [195] R.Suriyanarayanan, H.G.Shivakumar, N.Shivanandappa, Effect of Different Diffusion Membranes on the Diffusion Rate of Niacinamide and Diclofenac Sodium From Topical Formulations, Pharm. Methods. 7 (2016) 94–98. https://doi.org/10.5530/phm.2016.7.14.
    [196] R.Opatrilova, A.Cernikova, L.Coufalova, J.Dohnal, J.Jampilek, In vitro permeation of micronized and nanonized alaptide from semisolid formulations, Sci. World J. 2013 (2013). https://doi.org/10.1155/2013/787283.
    [197] Higuchi T., Mechanism of Sustained- Action Medication, J. Pharm. Sci. 52 (1963) 1145–1149.
    [198] R.W.Korsmeyer, R.Gurny, E.Doelker, P.Buri, N.A.Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm. 15 (1983) 25–35. https://doi.org/10.1016/0378-5173(83)90064-9.
    [199] J.N.Putro, S.Ismadji, C.Gunarto, F.E.Soetaredjo, Y.H.Ju, A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release, J. Mol. Liq. 298 (2020) 112034. https://doi.org/10.1016/j.molliq.2019.112034.
    [200] J.Tarrio-Saavedra, J.Lopez-Beceiro, A.Alvarez, S.Naya, S.Quintana-Pita, S.Garcia-Pardo, F.J.Garcia-Saban, Lifetime estimation applying a kinetic model based on the generalized logistic function to biopolymers, J Therm Anal Calorim. 122 (2015) 1203–1212.
    [201] H.Wen, H.Zhou, L.Hao, H.Chen, H.Xu, X.Zhou, Enzyme cum pH dual-responsive controlled release of avermectin from functional polydopamine microcapsules, Colloids Surfaces B Biointerfaces. 186 (2020) 110699. https://doi.org/10.1016/j.colsurfb.2019.110699.
    [202] A.M.Craciun, M.L.Barhalescu, M.Agop, L.Ochiuz, Theoretical Modeling of Long-Time Drug Release from Nitrosalicyl-Imine-Chitosan Hydrogels through Multifractal Logistic Type Laws, Comput. Math. Methods Med. 2019 (2019). https://doi.org/10.1155/2019/4091464.
    [203] J.N.Putro, S.Ismadji, C.Gunarto, M.Yuliana, S.P.Santoso, F.E.Soetaredjo, Y.H.Ju, The effect of surfactants modification on nanocrystalline cellulose for paclitaxel loading and release study, J. Mol. Liq. 282 (2019) 407–414. https://doi.org/10.1016/j.molliq.2019.03.037.
    [204] S.P.Santoso, L.Laysandra, J.N.Putro, J.Lie, F.E.Soetaredjo, S.Ismadji, A.Ayucitra, Y.H.Ju, Preparation of nanocrystalline cellulose-montmorillonite composite via thermal radiation for liquid-phase adsorption, J. Mol. Liq. 233 (2017) 29–37. https://doi.org/10.1016/j.molliq.2017.02.091.
    [205] M.Navarro-Hoyos, D.Alvarado-Corella, I.Moreira-Gonzalez, E.Arnaez-Serrano, M.Monagas-Juan, Polyphenolic composition and antioxidant activity of aqueous and ethanolic extracts from uncaria tomentosa bark and leaves, Antioxidants. 7 (2018). https://doi.org/10.3390/antiox7050065.
    [206] O.P.Sharma, T.K.Bhat, DPPH antioxidant assay revisited, Food Chem. 113 (2009) 1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008.
    [207] M.Eskandani, H.Hamishehkar, J.E.N.Dolatabadi, Cyto/genotoxicity study of polyoxyethylene (20) sorbitan monolaurate (tween 20), DNA Cell Biol. 32 (2013) 498–503. https://doi.org/10.1089/dna.2013.2059.
    [208] W.Warisnoicharoen, A.B.Lansley, M.J.Lawrence, Nonionic oil-in-water microemulsions: The effect of oil type on phase behaviour, Int. J. Pharm. 198 (2000) 7–27. https://doi.org/10.1016/S0378-5173(99)00406-8.
    [209] H.S.Basheer, M.Ibrahim Noordin, M.M.Ghareeb, Characterization of microemulsions prepared using isopropyl palmitate with various surfactants and cosurfactants, Trop. J. Pharm. Res. 12 (2013) 305–310. https://doi.org/10.4314/tjpr.v12i3.5.
    [210] M.Delample, N.Villandier, J.P.Douliez, S.Camy, J.S.Condoret, Y.Pouilloux, J.Barrault, F.Jérôme, Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β,β-diarylation of acrylates over palladium nanoparticles, Green Chem. 12 (2010) 804–80. https://doi.org/10.1039/b925021b.
    [211] Y.Li, A.Angelova, J.Liu, V.M.Garamus, N.Li, M.Drechsler, Y.Gong, A.Zou, In situ phase transition of microemulsions for parenteral injection yielding lyotropic liquid crystalline carriers of the antitumor drug bufalin, Colloids Surfaces B Biointerfaces. 173 (2019) 217–225. https://doi.org/10.1016/j.colsurfb.2018.09.023.
    [212] A.Kumar, A.Mandal, Characterization of rock- fl uid and fl uid- fl uid interactions in presence of a family of synthesized zwitterionic surfactants for application in enhanced oil recovery, 549 (2018) 1–12. https://doi.org/10.1016/j.colsurfa.2018.04.001.
    [213] R.Kumar, S.Kumar, V.R.Sinha, Evaluation and Optimization of Water-in-Oil Microemulsion Using Ternary Phase Diagram and Central Composite Design, J. Dispers. Sci. Technol. 37 (2015) 166–172. https://doi.org/10.1080/01932691.2015.1038351.
    [214] J.Sood, B.Sapra, A.K.Tiwary, Microemulsion Transdermal Formulation for Simultaneous Delivery of Valsartan and Nifedipine: Formulation by Design, AAPS PharmSciTech. 18 (2017) 1901–1916. https://doi.org/10.1208/s12249-016-0658-0.
    [215] P.Criado, C.Fraschini, S.Salmieri, D.Becher, A.Safrany, M.Lacroix, Evaluation of antioxidant cellulose nanocrystals and applications in gellan gum films, Ind. Biotechnol. 11 (2015) 59–68. https://doi.org/10.1089/ind.2014.0017.
    [216] L.Müller, K.Fröhlich, V.Böhm, Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay, Food Chem. 129 (2011) 139–148. https://doi.org/10.1016/j.foodchem.2011.04.045.
    [217] A.Yeboah, S.Ying, J.Lu, Y.Xie, H.Amoanimaa-Dede, K.G.A.Boateng, M.Chen, X.Yin, Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties, Food Sci. Technol. (2020). https://doi.org/10.1590/fst.19620.
    [218] C.Persson, E.Robert, E.Carlsson, C.Robo, A.López, M.Godoy-Gallardo, M.P.Ginebra, H.Engqvist, The effect of unsaturated fatty acid and triglyceride oil addition on the mechanical and antibacterial properties of acrylic bone cements, J. Biomater. Appl. 30 (2015) 279–289. https://doi.org/10.1177/0885328215581316.
    [219] Q.Ma, P.M.Davidson, Q.Zhong, Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80, Int. J. Food Microbiol. 226 (2016) 20–25. https://doi.org/10.1016/j.ijfoodmicro.2016.03.011.
    [220] C.Gunarto, Y.H.Ju, J.N.Putro, P.L.Tran-Nguyen, F.E.Soetaredjo, S.P.Santoso, A.Ayucitra, A.E.Angkawijaya, S.Ismadji, Effect of a nonionic surfactant on the pseudoternary phase diagram and stability of microemulsion, J. Chem. Eng. Data. 65 (2020) 4024–4033. https://doi.org/10.1021/acs.jced.0c00341.
    [221] V.Panapisal, S.Charoensri, A.Tantituvanont, Formulation of Microemulsion Systems for Dermal Delivery of Silymarin, AAPS PharmSciTech. 13 (2012) 389–399. https://doi.org/10.1208/s12249-012-9762-y.
    [222] S.Kim, E.Cho, J.Yoo, M.In, H.J.Chae, Solubility and Storage Stability of Astaxanthin, Korean J. Biotechnol. Bioeng. 23 (2008) 546–550.
    [223] W.Y.Tong, A.Y.K.binAbdullah, N.A.S.binti Rozman, M.I.A.binWahid, M.S.Hossain, L.C.Ring, Y.Lazim, W.N.Tan, Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin, Cellulose. 25 (2018) 631–638. https://doi.org/10.1007/s10570-017-1562-9.
    [224] A.M.Barbosa, E.Robles, J.S.Ribeiro, R.G.Lund, N.L.V.Carreño, J.Labidi, Cellulose nanocrystal membranes as excipients for drug delivery systems, Materials (Basel). 9 (2016) 1–15. https://doi.org/10.3390/ma9121002.
    [225] N.T.Program, Toxicity Studies of Castor Oil in F344/N Rats and B6C3F1 Mice (Dosed Feed Studies), Bethesda, MD, 1992.

    QR CODE