簡易檢索 / 詳目顯示

研究生: 林寬
Kuan Lin
論文名稱: 光觸媒催化輔助於單晶4H-碳化矽晶圓研光複合盤製造之研究
Photocatalytic Catalyzed of Composited Platen for Lapping of Single Crystal 4H-Silicon Carbide Wafer
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 陳炤彰
Chao-Chang A. Chen
趙崇禮
Chao-Choung Lii
閻琦
CI YAN
朱瑾
Jinn P. Chu
邱永傑
Yong-Jie Ciou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 159
中文關鍵詞: 碳化矽光觸媒催化研光化學機械拋光
外文關鍵詞: Silicon carbide, Photocatalytic, Lapping, Chemical mechanical polishing
相關次數: 點閱:253下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電動汽車、再生能源及快速充電等高功率元件的應用矽功率元件已無法滿足市場需求,因此單晶碳化矽 (SiC) 相較於單晶矽具有高寬能隙、高崩潰電壓及高熱傳導率等特性較適合用於高功率元件,然而單晶碳化矽具有較高硬度(Mohs硬度為 9.25-9.50或2800 Kg/mm2),硬度僅次於鑽石,所以單晶碳化矽進行磨削,研光與化學機械拋光 (Chemical Mechanical Polishing, CMP)需要使用較多的時間,同時須使用較多的耗材,會增加製造成本,因此如何縮短加工時間及降低製造成本是一重要的研究課題。本研究提出一種研磨複合盤的新穎製作方法用於4H-SiC晶圓矽面的研磨加工,藉由複合盤及氯化銀/銀原子簇的光觸媒(Photocatalytic)催化研磨液中雙氧水的分解反應,增加羥基自由基的形成,用以增加4H-SiC晶圓矽面快速形成非晶質的二氧化矽,進而增加4H-SiC晶圓矽面的研磨效率。添加氯化銀光觸媒能有效的產生氫氧自由基能與4H-SiC矽面懸空鍵鍵結反應,透過拉曼檢測發現有效提升氧化層生成。單純添加6.0 wt%過氧化氫所得到之材料移除率會上升約29.5%;研光液添6.0 wt%的過氧化氫與10.0wt%的氯化銀光觸媒並以紫外光燈照射其中,材料移除率為會上升約85.6%,最後使用化學機械拋光製程(Chemical Mechanical Polishing, CMP)讓4H-SiC矽面的表面粗糙度達到Sa為0.1nm,同時減少整個加工時間達33.3%。


    Silicon wafers are not fully substainable for the application of high-power components such as electric vehicles, recycle energy and fast charging. Therefore, single crystal silicon carbide (SiC) has a high energy gap, high breakdown voltage and high thermal conductivity compared with single crystal silicon, and it has been applied to high power components. However, single crystal silicon carbide has a high hardness (Mohs hardness of 9.25-9.50 or 2800Kg/ mm2), lower than diamond, so the single crystal SiC lapping and chemical mechanical polishing (CMP) require long processing time, more consumables, and more manufacturing cost. It is important to shorten the processing time and reduce the manufacturing cost. This study has developed a novel manufacturing method of composited platen for lapping of Si-face of 4H-SiC wafers. During the lapping process, the decomposition reaction of hydrogen peroxide in the slurry is catalyzed by the photocatalytic catalyzed for silver chloride/silver clustering of the composited platen. The increasing formation of hydroxyl radicals is used to improve the formation of the amorphous silicon oxide rapidly on the surface of the Si-face of 4H-SiC wafer, thereby increasing the lapping and polishing efficiency of the Si-face of 4H-SiC wafer. The addition of silver chloride photocatalyst can effectively produce hydroxyl radicals and react with the dangling bonds of Si-face of 4H-SiC.
    Through Raman analysis, it is found to improve the formation of oxide layer effectively. The material removal rate (MRR) by adding 6.0 wt% hydrogen peroxide in the lapping solution can increased as 29.5%. Adding 6.0 wt% hydrogen peroxide and 10.0 wt% silver chloride photocatalyst and irradiated with ultraviolet light in the lapping solution, the MRR increases to 85.6%. Finally, the CMP process is used to achieve a surface roughness 0.1 nm of Si-face of 4H-SiC of while reducing the overall processing time by up to 33.3%.

    摘要 2 Abstract 3 致謝 4 目錄 5 圖目錄 9 表目錄 14 第一章 緒論 20 1.1 研究背景 20 1.2 研究目的與方法 24 第二章 文獻回顧 28 2.1 單晶4H-SiC的晶體結構與材料性質 28 2.2 單晶4H-SiC晶圓的磨削及研光 34 2.3 單晶4H-SiC的化學機械拋光 42 2.4 光觸媒輔助化學磨拋加工 53 2.5 CeO2的化學機械拋光與催化特性 61 2.6 磨拋光製程相關專利分析 64 2.7 文獻回顧總結 76 第三章 研光盤製造過程 77 3.1 盤面設計演進 77 3.1.1 初代盤面設計 77 3.1.2 二代盤面設計 78 3.1.3 三代盤面設計 79 3.2 盤面製造流程 80 3.2.1 灌模治具開模 80 3.2.2 樹脂選用與粉末混練 81 3.2.3 灌模及乾燥處理 82 3.2.4 盤面貼合及溝槽加工 83 第四章 實驗規劃 84 4.1 浸泡測試 (實驗A) 89 4.2 研光實驗參數測試 (實驗B-1) 90 4.3 過氧化氫及光觸媒輔助實驗 (實驗B-2 ) 91 4.4 四吋碳化矽晶圓製程效益分析 (實驗C) 92 4.5 實驗設備 93 4.6 實驗耗材 95 4.6.1 複合式研光盤 95 4.6.2 鑽石磨粒 96 4.6.3 氧化鈰磨粒 97 4.6.4 氯化銀粉末 98 4.7 實驗量測設備 100 第五章 實驗結果與討論 101 5.1 浸泡實驗 (實驗A) 102 5.3 研光製程參數對4H-SiC晶圓測試分析 (實驗 B-1) 107 5.4 不同研光液配方對4H-SiC晶圓測試分析 (實驗 B-2) 111 5.5 4吋4H-SiC晶圓測試分析 (實驗 C) 115 第六章 結論與建議 118 6.1 結論 118 6.2 建議 119 參考文獻 120 附錄.A研光前晶圓品質 122 附錄.B研光後晶圓品質 136 附錄.C量測儀器 150 附錄.D補實驗 152 作者介紹 159

    [1] " The Next Generation of Power Conversion Systems Enabled by SiC Power Devices," ROHM Semiconductor, 2014.
    [2] " Innovative Power Devices for a Sustainable Future, " MITSUBISHI Electric, 2019.
    [3] Philip G. Neudeck, " SiC TECHNOLOGY," Book Chapter in VLSI Technology, pages 6-1 to 6-32, Jan., 1998. ( published 19 Mar 2003 )
    [4] Mun Teng Soo, "Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications, " Sensors and Actuators B: Chemical, Volume 151, Issue 1, Pages 39-55, 2010.
    [5] Yan Zhou, " Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers, Tribology International, " Volume 87, Pages 145-150, 2015.
    [6] Xuejiang Chen, " Stepped morphology on vicinal 3C- and 4H-SiC (0001) faces: A kinetic Monte Carlo study, " Surface Science, Volume 681, Pages 18-23, 2019.
    [7] Tsuchida, " Formation of extended defects in 4H-SiC epitaxial growth and development of a fast growth technique, " Physica Status Solidi B Basic Research, 246, 7, 1553-1568, Jul., 2009.
    [8] Akihisa Kubota, " Fabrication of Smooth Surface on 4H-SiC Substrate by Ultraviolet Assisted Local Polishing in Hydrogen Peroxide Solution, " Key Engineering Materials 523-524:24–28, 2012.
    [9] Ming-Yi Tsai, Yue-Feng Lin, Guan-Fu Lin " Development of Combined Diamond-impregnated Lapping Plates, " Int J Adv Manuf Technol 105, 1519–1530, 2019.
    [10] Vacassy, R., " Surface Engineering of SiC through Nanogrinding and CMP, " Materials Science Forum, 924, 539–542, Jun., 2018.
    [11] Yang Jyun-Kai, "Research on Hybrid Energy Chemical Mechanical Polishing of Monocrystalline Silicon Carbide Substrate, " Master Thesis of National Taiwan of Science and Technology, 2014.
    [12] Ding Jyun Chen, " Research on Diamond Lapping and Chemical Mechanical Polishing of Single Crystalline Silicon Carbide Substrate, " Master Thesis of National Taiwan of Science and Technology, Jul., 2015.
    [13] Shih-Chen Chang, " Research on Gas Liquid Assisted Chemical Mechanical Polishing of Monocrystalline Silicon Carbide Substrate, " Master Thesis of National Taiwan of Science and Technology, Jul., 2016.
    [14] Junji Murata, " Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles, " International Journal of Machine Tools and Manufacture, Volume 114, Pages 1-7, 2017.
    [15] Yu Chen Huang, " Study on Graphene Oxide Hybrid Slurry in Chemical Mechanical Polishing of Monocrystalline Silicon Carbide Wafer, " Master Thesis of National Taiwan of Science and Technology, Jul., 2017.
    [16] Tao Yin, " Polishing Characteristics of MnO2 Polishing Slurry on the Si-face of SiC Wafer, " Int. J. Precis. Eng. Manuf. 19, 1773–1780, 2018.
    [17] Takeshi Tanaka, " Verification of the Effectiveness of UV-Polishing for 4H-SiC Wafer Using Photocatalyst and Cathilon, International Journal of Automation Technology, " Volume 12, Issue 2, Pages 160-169, Nov. 05, 2018.
    [18] Zewei Yuan, " UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer, Materials and Manufacturing Processes, " 33:11, 1214-1222, 2018.
    [19] Shikha Garg, " Mechanistic Insights into Free Chlorine and Reactive Oxygen Species Production on Irradiation of Semiconducting Silver Chloride Particles, " particles, Silver Ions and Reactive Oxygen Species. Langmuir, 28, 10266−10275. 2012.
    [20] N. Selvi, " Effect of ZnO SiO2 dual shells on CeO2 hybrid core–shell nanostructures and their structural, optical and magnetic properties, " RSC Adv., 4, 55745, 2014.
    [21] Bi Xiangyu, " Detection and Surface Reactivity of Engineered Nanoparticles in Water, " Environmental engineering; Nanoscience ; Chemistry, Arizona State University, Jan., 2018.
    [22] Hui Deng, " Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry, Electrochemistry Communications, " Volume 52, Pages 5-8, 2015.
    [23] Zhi-Gang Chen, " Synthesis of Nano-Sized Ceo2 Via Alcohol-water Method and Its Polishing Performance on GaAs Wafer, "中國有色金屬學報, Page: 138-143, 2015.

    QR CODE