簡易檢索 / 詳目顯示

研究生: 侯龍斌
Long-Bin Hou
論文名稱: 鈷摻雜MIL-88B(Fe)反應性晶種生長Al2O3薄膜於光觸媒薄膜反應器中移除苯酚之應用
In situ growth of cobalt-doped MIL-88B(Fe) on Al2O3 membrane through reactive seeding for phenol removal in photocatalytic membrane reactor
指導教授: 胡哲嘉
Che-chia Hu
口試委員: 顧洋
Young Ku
陳志吉
Chih-chi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 有機金屬骨架材水處理光觸媒薄膜反應器
外文關鍵詞: Metal-Organic Framework (MOF), wastewater treatment, photocatalytic membrane reactor (PMR)
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著科技日新月異、工業蓬勃發展,全世界對於用水的需求量大增,加上醫療進步帶來的人均壽命延長,人口過剩水資源的分配有限,如何有效處理廢水成為這個世紀備受矚目的議題。本研究結合薄膜過濾和光觸媒催化技術,形成光觸媒薄膜反應器(Photocatalytic Membrane Reactor, PMR),在減少觸媒反應後易流失問題的同時亦能降低因積垢帶來的薄膜壽命下降等現象。
    本實驗利用溶劑熱法合成不同比例摻雜鈷之MIL-88B(Fe),改善光生電子電洞對再結合速率快、提高光吸收等問題,其中5CoMIL-88B(Fe)顯示最好的光催化效率,此外再添加單硫酸氫鉀複合鹽(peroxymonosulfate, PMS)作為氧化劑輔助光催化進行,可於光源照射下達90%以上的苯酚去除率。由於粉體觸媒實驗後回收較為困難,因此將光觸媒材料以塗佈、長晶等方式合成於氧化鋁基板上,形成光觸媒薄膜,依照合成方式分別命名為PVA-catalyst@Al2O3、MRS-catalyst@Al2O3,於PMR系統中以不同條件下對苯酚的光照去除進行實驗,由反應結果得知,隨著添加PMS濃度的提升,MRS-5CoMIL-88B(Fe)@Al2O3於光照下對苯酚的去除率明顯提升,同時提高了滲透通量,證明此系統在光照去除苯酚的同時仍能有效降低薄膜結垢。此外,由於高分子塗佈而在氧化鋁基材表面形成緻密的光觸媒薄膜卻也造成氧化鋁基板孔隙被堵塞,相較之下,由長晶法均勻生長於基材孔隙間的MRS-catalyst@Al2O3的滲透通量將近為PVA-catalyst@Al2O3的11~15倍。
    經反應過後,薄膜表面之光觸媒於結構上雖有些許變化,但仍維持原形貌,材料中之活性位點元素未有明顯被破壞,經10次PMR重複性試驗後仍能達到90%左右的苯酚去除率,證明此系統對於有機廢水的光催化降解具有良好的長效、穩定性。


    In recent years, with the rapid development of science and technology, the demand for clean water has greatly increased around the world. However, overpopulation due to evolution of medical resulting the competition for water. How to treat wastewater effectively has become a challenge in this century. This study combines membrane filtration and photocatalyst technology to form a photocatalytic membrane reactor (Photocatalytic Membrane Reactor, PMR), which could not only avoid the loss of catalyst but also inhibit the membrane fouling.
    In this experiment, MIL-88B(Fe) doped with different cobalt was synthesized through solvothermal. Among them, 5CoMIL-88B(Fe) showed the best photocatalytic efficiency that mean optimum cobalt doping with potential to improve electron-hole recombination rate and light absorption of photocatalyst. In addition, Oxone (peroxymonosulfate, PMS) is added as an oxidant to assist photocatalysis, which can achieve more than 90% phenol removal under light irradiation. Since it is difficult to recycle powder after reaction, the photocatalyst was synthesized on the alumina substrate through coating, reactive seeding. The membranes formed were been named PVA-catalyst@Al2O3 and MRS-catalyst@Al2O3, respectively. The photocatalytic phenol removal conducted under several conditions. Results show that removal efficiency through MRS-5CoMIL-88B(Fe)@Al2O3 enhanced with concentration of PMS increasing. At the same time, the permeance flux were 11~15 times higher compared to PVA-5CoMIL-88B(Fe)@Al2O3 due to homogeneous growth of photocatalyst in the pores of Al2O3.
    After the reaction, although the structure of the photocatalyst on the membrane surface has changed slightly, but it still maintains the morphology. Moreover, the active site of material remained. After 10 times PMR repeatability tests, it still show a high phenol removal about 90%. The results proved that the PMR system in this work has a long-term, stable potential for the photocatalytic degradation of organic wastewater.

    中文摘要.........I Abstract........II 目錄............III 誌謝............IV 圖目錄..........V 表目錄..........VIII 第一章 緒論......................1 第二章 文獻回顧..................3 2.1 工業汙水簡介.................3 2.1.1 酚類汙水介紹...............3 2.1.2 常見廢水處理之方式..........4 2.2 光觸媒原理及反應機制..........6 2.3 金屬有機骨架材料之特性........9 2.3.1 鐵基金屬有機骨架材料之介紹...9 2.3.2 有機金屬骨架材之改質.........12 2.4 薄膜過濾系統之原理及應用........15 2.5 光觸媒薄膜反應器(PMR)系統.......19 2.5.1 PMR系統之種類................19 2.5.2 常見光觸媒薄膜製備方法........21 2.6 研究動機.......................23 第三章、實驗步驟與系統..............24 3.1 實驗藥品與器材..................24 3.2 實驗步驟.......................25 3.2.1 鈷摻雜MIL-88B(Fe)之合成.......25 3.2.2 MIL-88B(Fe)於氧化鋁薄膜之製備...25 3.2.3 不同系統下光催化降解苯酚.......26 3.3 儀器分析原理....................28 第四章、實驗結果與討論...............31 4.1 鈷摻雜MIL-88B(Fe)的特性分析......31 4.2鈷摻雜MIL-88B(Fe)於批次反應系統的苯酚光降解效果.....38 4.3 鈷摻雜MIL-88B(Fe)薄膜於PMR系統的苯酚光降解.........43 第五章、結論.....................................49 參考文獻.........................................50 附錄.............................................58

    [1] J. L. Wescoat Jr, Books of note-Water in Crisis: A Guide to the World's Fresh Water Resources edited by Peter H. Gleick, Environment 36 (1994) 26.
    [2] A. Inyinbor Adejumoke, O. Adebesin Babatunde, P. Oluyori Abimbola, A. Adelani Akande Tabitha, O. Dada Adewumi, A. Oreofe Toyin, Water pollution: effects, prevention, and climatic impact, Water Challenges of an Urbanizing World 33 (2018) 33-47, DOI: 10.5772/intechopen.72018
    [3] W. W. Anku, M. A. Mamo, P. P. Govender, Phenolic compounds in water: sources, reactivity, toxicity and treatment methods, Phenolic compounds-natural sources, importance and applications (2017) 419-443, DOI: 10.5772/66927
    [4] L. G. C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K. E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Current Pollution Reports 2 (2016) 157-167, DOI: 10.1007/s40726-016-0035-3
    [5] 行政院環保署化工業流放水標準 2019
    [6] S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desalination and Water Treatment 53 (2015) 2215-2234, DOI: 10.1080/19443994.2014.883327
    [7] H. Jiang, Y. Fang, Y. Fu, Q. X. Guo, Studies on the extraction of phenol in wastewater, Journal of Hazardous Materials 101 (2003) 179-190, DOI: 10.1016/S0304-3894(03)00176-6
    [8] M. A. Musa, S. Idrus, Physical and biological treatment technologies of slaughterhouse wastewater: A review, Sustainability 13 (2021) 4656, DOI: 10.3390/su13094656
    [9] E. Worch, Adsorption technology in water treatment, de Gruyter2021, DOI: 10.1515/9783110715507
    [10] T. Mohammadi, S. Madaeni, M. Moghadam, Investigation of membrane fouling, Desalination 153 (2003) 155-160, DOI: 10.1016/S0011-9164(02)01118-9
    [11] J. L. Wang, L. J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Critical reviews in environmental science and technology 42 (2012) 251-325, DOI: 10.1080/10643389.2010.507698
    [12] J. Cao, L. Lai, B. Lai, G. Yao, X. Chen, L. Song, Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism, Chemical Engineering Journal 364 (2019) 45-56, DOI: 10.1016/j.cej.2019.01.113
    [13] J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chemical Engineering Journal 334 (2018) 1502-1517, DOI: 10.1016/j.cej.2017.11.059
    [14] R. Saravanan, F. Gracia, A. Stephen, Basic principles, mechanism, and challenges of photocatalysis, Nanocomposites for visible light-induced photocatalysis 8 (2017) 19-40, DOI: 10.1007/978-3-319-62446-4_2
    [15] S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Advanced Materials 27 (2015) 2150-2176, DOI: 10.1002/adma.201500033
    [16] S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur, M. Amini, Metal oxides and metal organic frameworks for the photocatalytic degradation: A review, Journal of Environmental Chemical Engineering 8 (2020) 103726, DOI: 10.1016/j.jece.2020.103726
    [17] X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis, ACS Catalysis 2 (2012) 1596-1606, DOI: 10.1021/cs300240x
    [18] F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal‐free catalyst for Friedel–Crafts reaction of benzene, Angewandte Chemie International Edition 45 (2006) 4467-4471, DOI: 10.1002/anie.200600412
    [19] S. Bagheri, Z. A. M. Hir, A. T. Yousefi, S. B. A. Hamid, Progress on mesoporous titanium dioxide: synthesis, modification and applications, Microporous and Mesoporous Materials 218 (2015) 206-222, DOI: 10.1016/j.micromeso.2015.05.028
    [20] L. Clarizia, G. Vitiello, D. K. Pallotti, B. Silvestri, M. Nadagouda, S. Lettieri, G. Luciani, R. Andreozzi, P. Maddalena, R. Marotta, Effect of surface properties of copper-modified commercial titanium dioxide photocatalysts on hydrogen production through photoreforming of alcohols, International Journal of Hydrogen Energy 42 (2017) 28349-28362, DOI: 10.1016/j.ijhydene.2017.09.093
    [21] J. Zhao, Y. Li, Y. Zhu, Y. Wang, C. Wang, Enhanced CO2 photoreduction activity of black TiO2−coated Cu nanoparticles under visible light irradiation: Role of metallic Cu, Applied Catalysis A: General 510 (2016) 34-41, DOI: doi.org/10.1016/j.apcata.2015.11.001
    [22] Q. Wang, Q. Gao, A. M. Al-Enizi, A. Nafady, S. Ma, Recent advances in MOF-based photocatalysis: environmental remediation under visible light, Inorganic Chemistry Frontiers 7 (2020) 300-339, DOI: 10.1039/C9QI01120J
    [23] Y. Z. Li, G. D. Wang, L. N. Ma, L. Hou, Y. Y. Wang, Z. Zhu, Multiple functions of gas separation and vapor adsorption in a new MOF with open tubular channels, ACS Applied Materials & Interfaces 13 (2021) 4102-4109, DOI: 10.1021/acsami.0c21554
    [24] G. Nagaraju, S. C. Sekhar, B. Ramulu, S. Hussain, D. Narsimulu, J. S. Yu, Ternary MOF-based redox active sites enabled 3D-on-2D nanoarchitectured battery-type electrodes for high-energy-density supercapatteries, Nano-micro letters 13 (2021) 1-18, DOI: 10.1007/s40820-020-00528-9
    [25] X. He, V. Nguyen, Z. Jiang, D. Wang, Z. Zhu, W. N. Wang, Highly-oriented one-dimensional MOF-semiconductor nanoarrays for efficient photodegradation of antibiotics, Catalysis Science & Technology 8 (2018) 2117-2123, DOI: 10.1039/C8CY00229K
    [26] T. Devic, C. Serre, High valence 3p and transition metal based MOFs, Chemical Society Reviews 43 (2014) 6097-6115, DOI: 10.1039/C4CS00081A
    [27] J. Meng, X. Liu, C. Niu, Q. Pang, J. Li, F. Liu, Z. Liu, L. Mai, Advances in metal–organic framework coatings: versatile synthesis and broad applications, Chemical Society Reviews 49 (2020) 3142-3186, DOI: 10.1039/C9CS00806C
    [28] K. K. Barnes, D. W. Kolpin, E. T. Furlong, S. D. Zaugg, M. T. Meyer, L. B. Barber, A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater, Science of the total environment 402 (2008) 192-200, DOI: doi.org/10.1016/j.scitotenv.2008.04.028
    [29] C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louër, G. Férey, Very large breathing effect in the first nanoporous chromium (III)-Based solids: MIL-53 or CrIII (OH)•{O2C−C6H4−CO2}•{HO2C− C6H4− CO2H}x• H2Oy, Journal of the American chemical society 124 (2002) 13519-13526, DOI: 10.1021/ja0276974
    [30] G. Férey, C. Serre, C. Mellot‐Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction, Angewandte Chemie 116 (2004) 6456-6461, DOI: 10.1002/ange.200460592
    [31] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040-2042, DOI: 10.1126/science.1116275
    [32] C. Gao, S. Chen, X. Quan, H. Yu, Y. Zhang, Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants, Journal of Catalysis 356 (2017) 125-132, DOI: 10.1016/j.jcat.2017.09.015
    [33] L. Ai, C. Zhang, L. Li, J. Jiang, Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation, Applied Catalysis B: Environmental 148 (2014) 191-200, DOI: 10.1016/j.apcatb.2013.10.056
    [34] H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, G. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework, Journal of Molecular Catalysis A: Chemical 400 (2015) 81-89, DOI: 10.1016/j.molcata.2015.02.007
    [35] M. Ma, H. Noei, B. Mienert, J. Niesel, E. Bill, M. Muhler, R.A. Fischer, Y. Wang, U. Schatzschneider, N. Metzler‐Nolte, Iron metal–organic frameworks MIL‐88B and NH2‐MIL‐88B for the loading and delivery of the gasotransmitter carbon monoxide, Chemistry–A European Journal 19 (2013) 6785-6790, DOI: 10.1002/chem.201201743
    [36] W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, L. C. Sim, An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane, Environmental Science and Pollution Research 27 (2020) 2522-2565, DOI: 10.1007/s11356-019-07193-5
    [37] F. X. Llabrés i Xamena, A. Corma, H. Garcia, Applications for metal− organic frameworks (MOFs) as quantum dot semiconductors, The Journal of Physical Chemistry C 111 (2007) 80-85, DOI: 10.1021/jp063600e
    [38] J. Gascon, M. D. Hernández‐Alonso, A. R. Almeida, G. P. van Klink, F. Kapteijn, G. Mul, Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene, ChemSusChem: Chemistry & Sustainability Energy & Materials 1 (2008) 981-983, DOI: 10.1002/cssc.200800203
    [39] C. H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. D’arras, C. Sassoye, L. Rozes, C. Mellot-Draznieks, A. Walsh, Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization, Journal of the American Chemical Society 135 (2013) 10942-10945, DOI: 10.1021/ja405350u
    [40] R. Medhi, M. D. Marquez, T. R. Lee, Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications, ACS Applied Nano Materials 3 (2020) 6156-6185, DOI: 10.1021/acsanm.0c01035
    [41] N. T. Tran, D. Kim, K. S. Yoo, J. Kim, Synthesis of Cu‐doped MOF‐235 for the Degradation of Methylene Blue under Visible Light Irradiation, Bulletin of the Korean Chemical Society 40 (2019) 112-117, DOI: 10.1002/bkcs.11650
    [42] Z. H. Yang, J. Cao, Y. P. Chen, X. Li, W. P. Xiong, Y. Y. Zhou, C. Y. Zhou, R. Xu, Y. R. Zhang, Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr (VI) from aqueous solution, Microporous and Mesoporous Materials 277 (2019) 277-285, DOI: 10.1016/j.micromeso.2018.11.014
    [43] X. Liu, Y. Li, X. Fan, F. Zhang, G. Zhang, W. Peng, Photo-accelerated Co3+/Co2+ transformation on cobalt and phosphorus co-doped g-C3N4 for Fenton-like reaction, Journal of Materials Chemistry A 9 (2021) 22399-22409, DOI: 10.1039/D1TA06026K
    [44] F. Liu, J. Cao, Z. Yang, W. Xiong, Z. Xu, P. Song, M. Jia, S. Sun, Y. Zhang, X. Zhong, Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53 (Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions, Journal of Colloid and Interface Science 581 (2021) 195-204, DOI: 10.1016/j.jcis.2020.07.100
    [45] M. T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination 235 (2009) 199-244, DOI: 10.1016/j.desal.2007.10.042
    [46] R. W. Baker, Membrane technology and applications, John Wiley & Sons2012.
    [47] J. Kucera, Reverse osmosis: industrial processes and applications, John Wiley & Sons2015.
    [48] B. Gu, D. Kim, J. Kim, D. R. Yang, Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module, Journal of membrane science 379 (2011) 403-415, DOI: 10.1016/j.memsci.2011.06.012
    [49] E. Obotey Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes 10 (2020) 89, DOI: 10.3390/membranes10050089
    [50] J. Kucera, Desalination: water from water, John Wiley & Sons2019.
    [51] J. G. Herterich, Q. Xu, R. W. Field, D. Vella, I. M. Griffiths, Optimizing the operation of a direct-flow filtration device, Journal of engineering Mathematics 104 (2017) 195-211, DOI: 10.1007/s10665-016-9879-1
    [52] R. Molinari, M. Mungari, E. Drioli, A. Di Paola, V. Loddo, L. Palmisano, M. Schiavello, Study on a photocatalytic membrane reactor for water purification, Catalysis Today 55 (2000) 71-78, DOI: 10.1016/S0920-5861(99)00227-8
    [53] N. Nasrollahi, L. Ghalamchi, V. Vatanpour, A. Khataee, Photocatalytic-membrane technology: a critical review for membrane fouling mitigation, Journal of Industrial and Engineering Chemistry 93 (2021) 101-116, DOI: 10.1016/j.jiec.2020.09.031
    [54] W. Zhang, L. Ding, J. Luo, M. Y. Jaffrin, B. Tang, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review, Chemical Engineering Journal 302 (2016) 446-458, DOI: 10.1016/j.cej.2016.05.071
    [55] X. Zhang, D. K. Wang, J. C. D. da Costa, Recent progresses on fabrication of photocatalytic membranes for water treatment, Catalysis Today 230 (2014) 47-54, DOI: 10.1016/j.cattod.2013.11.019
    [56] M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A.Y. Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application, Advanced Powder Technology 27 (2016) 2066-2075, DOI: 10.1016/j.apt.2016.07.018
    [57] A. A. Habibpanah, S. Pourhashem, H. Sarpoolaky, Preparation and characterization of photocatalytic titania–alumina composite membranes by sol–gel methods, Journal of the European Ceramic Society 31 (2011) 2867-2875, DOI: 10.1016/j.jeurceramsoc.2011.06.014
    [58] J. J. Huang, C. C. Lin, D. S. Wuu, Antireflection and passivation property of titanium oxide thin film on silicon nanowire by liquid phase deposition, Surface and Coatings Technology 320 (2017) 252-258, DOI: 10.1016/j.surfcoat.2017.01.027
    [59] H. Zong, X. Xia, Y. Liang, S. Dai, A. Alsaedi, T. Hayat, F. Kong, J. H. Pan, Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques, Materials Science and Engineering: C 92 (2018) 1075-1091, DOI: 10.1016/j.msec.2017.11.007
    [60] U. Baig, A. Matin, M. Gondal, S. Zubair, Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants, Journal of Cleaner Production 208 (2019) 904-915, DOI: 10.1016/j.jclepro.2018.10.079
    [61] Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y. M. Lee, Metal–organic framework membranes fabricated via reactive seeding, Chemical communications 47 (2011) 737-739, DOI: 10.1039/C0CC03927F
    [62] X. D. Du, X. H. Yi, P. Wang, W. Zheng, J. Deng, C. C. Wang, Robust photocatalytic reduction of Cr (VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation, Chemical Engineering Journal 356 (2019) 393-399, DOI: 10.1016/j.cej.2018.09.084
    [63] S. S. Chen, C. Hu, C. H. Liu, Y. H. Chen, T. Ahamad, S.M. Alshehri, P. H. Huang, K.C. W. Wu, De Novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation, Journal of Hazardous Materials 397 (2020) 122431, DOI: 10.1016/j.jhazmat.2020.122431
    [64] W. W. Andualem, Green synthesis of CuO nanoparticles for the application of dye sensitized solar cell, (2020), DOI: 10.20959/wjpr202013-18436
    [65] Y. Xiao, X. Guo, H. Huang, Q. Yang, A. Huang, C. Zhong, Synthesis of MIL-88B(Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity, RSC advances 5 (2015) 7253-7259, DOI: 10.1039/C4RA13727B
    [66] M. Ma, A. Bétard, I. Weber, N. S. Al-Hokbany, R. A. Fischer, N. Metzler-Nolte, Iron-based metal–organic frameworks MIL-88B and NH2-MIL-88B: high quality microwave synthesis and solvent-induced lattice “breathing”, Crystal growth & design 13 (2013) 2286-2291, DOI: 10.1021/cg301738p
    [67] S. Choi, W. Cha, H. Ji, D. Kim, H. J. Lee, M. Oh, Synthesis of hybrid metal–organic frameworks of {FexMyM’1− x− y}-MIL-88B and the use of anions to control their structural features, Nanoscale 8 (2016) 16743-16751, DOI: 10.1039/C6NR05463C
    [68] N. Geng, W. Chen, H. Xu, M. Ding, T. Lin, Q. Wu, L. Zhang, Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism, Ultrasonics sonochemistry 72 (2021) 105411, DOI: 10.1016/j.ultsonch.2020.105411
    [69] J. Liu, Z. Ran, Q. Cao, S. Ji, Preparation of MIL-88B (Fex, Co1− x) catalysts and their application in one-step liquid-phase methanol oxidation to methyl formate using H2O2, Chinese Journal of Catalysis 42 (2021) 2254-2264, DOI: 10.1016/S1872-2067(20)63749-4
    [70] N. S. Gultom, H. Abdullah, D. H. Kuo, Facile synthesis of cobalt-doped (Zn, Ni)(O, S) as an efficient photocatalyst for hydrogen production, Journal of the Energy Institute 92 (2019) 1428-1439, DOI: 10.1016/j.joei.2018.08.008
    [71] L. A. Achola, A. Ghebrehiwet, J. Macharia, P. Kerns, J. He, J. Fee, C. Tinson, J. Shi, S. March, M. Jain, Enhanced visible-light-assisted peroxymonosulfate activation on cobalt-doped mesoporous iron oxide for orange II degradation, Applied Catalysis B: Environmental 263 (2020) 118332, DOI: 10.1016/j.apcatb.2019.118332
    [72] M. Fu, B. Chai, J. Yan, C. Wang, G. Fan, G. Song, F. Xu, Facile preparation of MIL-88B-Fe metal–organic framework with high peroxidase-like activity for colorimetric detection of hydrogen peroxide in milk and beer, Applied Physics A 127 (2021) 1-11, DOI: 10.1007/s00339-021-05082-8
    [73] J. J. Du, Y. P. Yuan, J. X. Sun, F. M. Peng, X. Jiang, L. G. Qiu, A. J. Xie, Y. H. Shen, J. F. Zhu, New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye, Journal of hazardous materials 190 (2011) 945-951, DOI: 10.1016/j.jhazmat.2011.04.029
    [74] L. Peng, M. Asgari, P. Mieville, P. Schouwink, S. Bulut, D. T. Sun, Z. Zhou, P. Pattison, W. Van Beek, W. L. Queen, Using predefined M3 (μ3-O) clusters as building blocks for an isostructural series of metal–organic frameworks, ACS applied materials & interfaces 9 (2017) 23957-23966, DOI: 10.1021/acsami.7b06041
    [75] J. Fan, Z. Zhao, Z. Ding, J. Liu, Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation, RSC advances 8 (2018) 7269-7279, DOI: 10.1039/C7RA12615H
    [76] J. Liu, F. An, M. Li, L. Yang, J. Wan, S. Zhang, Efficient degradation of 2, 4-Dichlorophenol on activation of peroxymonosulfate mediated by MnO2, Bulletin of Environmental Contamination and Toxicology 107 (2021) 255-262, DOI: 10.1007/s00128-021-03109-7
    [77] W. Tang, Y. Zhang, H. Guo, Y. Liu, Heterogeneous activation of peroxymonosulfate for bisphenol AF degradation with BiOI0.5Cl0.5, RSC Advances 9 (2019) 14060-14071, DOI: 10.1039/C9RA01687B
    [78] J. Hou, X. He, S. Zhang, J. Yu, M. Feng, X. Li, Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review, Science of The Total Environment 770 (2021) 145311, DOI: 10.1016/j.scitotenv.2021.145311
    [79] Y. Zhang, W. Chu, Cooperation of multi-walled carbon nanotubes and cobalt doped TiO2 to activate peroxymonosulfate for antipyrine photocatalytic degradation, Separation and Purification Technology 282 (2022) 119996, DOI: 10.1016/j.seppur.2021.119996
    [80] S. Yang, J. S. Gu, H. Y. Yu, J. Zhou, S. F. Li, X. M. Wu, L. Wang, Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor, Separation and Purification Technology 83 (2011) 157-165, DOI: 10.1016/j.seppur.2011.09.030
    [81] X. Wang, G. Wang, S. Chen, X. Fan, X. Quan, H. Yu, Integration of membrane filtration and photoelectrocatalysis on g-C3N4/CNTs/Al2O3 membrane with visible-light response for enhanced water treatment, Journal of Membrane Science 541 (2017) 153-161, DOI: 10.1016/j.memsci.2017.06.046
    [82] N. E. Salim, J. Jaafar, A. Ismail, M. Othman, M. A. Rahman, N. Yusof, M. Qtaishat, T. Matsuura, F. Aziz, W. Salleh, Preparation and characterization of hydrophilic surface modifier macromolecule modified poly (ether sulfone) photocatalytic membrane for phenol removal, Chemical Engineering Journal 335 (2018) 236-247, DOI: 10.1016/j.cej.2017.10.147
    [83] S. Deepracha, L. Atfane, A. Ayral, M. Ogawa, Simple and efficient method for functionalizing photocatalytic ceramic membranes and assessment of its applicability for wastewater treatment in up-scalable membrane reactors, Separation and Purification Technology 262 (2021) 118307, DOI: 10.1016/j.seppur.2021.118307

    無法下載圖示 全文公開日期 2027/08/11 (校內網路)
    全文公開日期 2027/08/11 (校外網路)
    全文公開日期 2027/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE