簡易檢索 / 詳目顯示

研究生: Shivi Rathore
Shivi Rathore
論文名稱: 無柵磊晶石墨烯於碳化矽基板上之寬頻光響應特性研究
A study of broadband photoresponse in gateless epitaxial graphene on silicon carbide substrate
指導教授: 洪伯達
Po-Da Hong
口試委員: 梁啟德
Chi-Te Liang
沙瓦南阿迪莫蒂
Sarvanan adhimoorthy
柯文政
Wen Cheng Ke
莊家翔
Chiashain Chuang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 112
中文關鍵詞: 碳化矽外延生長石墨烯寬帶光偵測器二元反應
外文關鍵詞: silicon carbide, epitaxial graphene, broadband photodetector, binary response
相關次數: 點閱:179下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    由於石墨烯的單原子層高導電性、光學透明性、高機械強度以及可彎曲性,現今其被應用於光電元件、生物成像、化學感測器、光譜學和邏輯元件等領域。得益於石墨烯的良好載子遷移率、零能隙以及線性色散的能帶關係,使得石墨烯光電探測器有超快光響應和從可見光到紅外光的寬光譜響應而極具吸引力。然而,基於石墨烯製造的光電探測器由於其低光吸收率、與光的弱交互作用力,以及石墨烯的光生載子有超快複合性而受到限制。
    機械剝離和化學氣相沈積法生成的單層石墨烯在非常高的靜電柵極電位並同時照光下顯示出非常低的光響應度,數量級大約為毫安/瓦 (mA/W)。當靜電勢或雷射光功率趨近零時,光響應度迅速下降到零。為了解決這個問題,研究人員使用了不同類型的光吸收材料來增加石墨烯的整體光吸收率並實現高光響應度,例如鈣鈦礦量子點(PQD)由於其高光吸收特性和可以產生多種傳輸載子,這極大地提高了單層石墨烯的響應度並引起人們的興趣。然而,PQDs 對大氣環境高度敏感。因此,我們必須克服空氣穩定、高靈敏度和簡單的元件幾何形狀的問題。
    為了克服這些問題,我們以 4H-SiC為基底開發了簡單的高靈敏度無靜電柵極外延石墨烯光電探測器,該元件可以在寬帶區域工作。我們單純通過從 SiC (0001) 表面昇華 Si 原子的方法,在 2000 ºC 左右的溫度下在 SiC 表面上生長單層外延石墨烯。通過額外的高溫退火,介於石墨烯和 SiC 之間有著Bernal 堆疊層的石墨表面會形成在晶體 SiC (0001)上,我們將其稱為界面緩衝層 (IBL),在EG形成過程中由於結構缺陷(厚度、非均勻性、皺褶、隨著區域不同而有不同摻雜濃度),使得介面緩衝層具有固有能隙。我們成功地用共焦雷射掃描顯微鏡 (CLSM)、拉曼光譜和原子力顯微鏡 (AFM) 表徵了這種單層 EG的特性。在光學鑑定之後,我們使用標準微影製程和金屬沉積技術製造Hall bar元件,最後進行低溫磁傳輸測量,以了解載子密度的類型及其遷移率,從而判別石墨烯的品質。單層 EG/4H-SiC 器件的載子密度和遷移率在 100 mK 時分別約為 1.58 × 1012 cm-2 和 2350 cm2 V-1 s-1。
    我們的光電探測器基於外延石墨烯而製造並在寬帶範圍內工作。 IBL/界面的能帶對齊是寬帶光響應的主因。儘管如此,IBL光電探測的功能是尚須研究的。在不同波長的雷射光照射下,我們在不使用靜電閘極的情況下發現了正響應和負響應。該元件對 405 nm 至 980 nm 的激發光波長作出響應,在波長為 405 nm功率為 7.96 mW/cm2的外加光源下施加電壓 1 伏特時,產生超過 10 A/W 的響應率。這個值比化學氣相沈積或機械剝離的石墨烯大三倍。為了更進一步確認光電檢測過程,我們探索了另外兩種沒有 IBL 長在 SiC 的元件用來進行比較。 (1) 剝離石墨烯在裸空的 SiC 上使用帶有預製電極製成的元件,以觀察 IBL 的效果。 (2) 在 SiC 上只有兩個電極的元件,用於了解基板和金屬電極。與基於 EG/4H-SiC 的元件相比,這兩種僅具有 SiC(基板)和 SiC 上的剝離石墨烯薄層(無 IBL)的元件都表現出可忽略不計的光響應。我們還發現我們的元件具有二元光響應,即(1)在高能激發(405 nm 至 532 nm)下光響應為正。 (2)在632-980nm之間檢測到負光響應,光電流隨著激發能量的增加而減小。
    我們的研究成果表明,需要更多的理論研究以更好地解釋這個系統。靜電閘極對光載流子層間傳輸的影響將是令人著迷的研究領域。 EG和SiC系統之間的金屬夾層也可能對系統的光電和磁光性能產生重大影響,也值得研究。 EG 在 4H-SiC 上的光致雙電荷轉移現象意味著 EG 的電子密度可以被光子能量改變,這在計量學(如紫外光度學)中具有重要意義。


    Abstract
    Graphene is used these days in the area of optoelectronic devices, bio-imaging, chemical sensors, spectroscopy, logic device application, etc. because of its atomically thin highly conductive layer, optical transparency, and mechanical flexibility and strength. Graphene photodetectors are highly attractive owing to their ultra-fast and wide-range spectral responses from visible to infrared benefit from the superior carrier mobility and the linear dispersion with zero band gap of graphene. However, graphene-based photodetectors are limited due to the low light absorption, weak light-matter interaction, and ultrafast recombination of photo-generated carriers in the graphene layer.
    Mechanically exfoliated pristine and CVD monolayer graphene show a very low photo responsivity on the order of milliamp/watt (mA/W) at a very high electrostatic gate potential and light exposure as well simultaneously. The photoresponsivity quickly falls off to zero when the electrostatic potential or laser power reaches zero. To solve this problem, researchers have used a different kind of photoabsorbing material to increase the overall absorption of graphene and achieved high responsivity, such as perovskite quantum dots (PQDs) have a great interest due to their high light absorption properties and generating multiple transport carriers which tremendously increase the responsivity of monolayer graphene. However, PQDs are highly sensitive to atmosphere environments. Therefore, air-stable, highly sensitive, and simple device geometry must need to overcome these problems.
    To this end, we developed a highly sensitive gate-free epitaxial graphene on 4H-SiC-based photodetector, which is probably the simplest devices that can operate in the broadband region. We grew monolayer epitaxial graphene on a SiC substrate at a temperature of around 2000 ºC just by sublimation of Si-atoms from SiC (0001) surface. With the extended high-temperature annealing, crystalline SiC (0001) forms a graphitic surface with Bernal stack layers between graphene and SiC and we called it an interfacial buffer layer that has inherently bandgap due to structural imperfections (thickness, non-uniformity, ripples, domains with different doping levels) that appear during EG formation. We successfully characterized this monolayer EG with confocal laser scanning microscopy (CLSM), Raman spectroscopy, and atomic force microscopy (AFM). After optical characterizations, we fabricate the Hall bar devices using standard photolithography and metal deposition techniques and finally perform the low-temperature magneto-transport measurements to know the types of the carrier density and its mobility which tells us about graphene qualities. The carrier density and mobility of EG/4H-SiC-based device are found to be about 1.58 × 1012 cm−2 and 2350 cm2 V−1 s−1, respectively at 100 mK temperature.
    Our photodetectors are based on epitaxial graphene and operate in the broadband range. The energy band alignment of the interfacial buffer layer (IBL)/interface is primarily responsible for the broadband energy photoresponse. Despite the fact that the function of IBL photodetection is unknown. Under different wavelengths of laser light, we reported both positive and negative responses without the use of gating. Under 405 nm of power 7.96 mW/cm2, our device responded to excitation wavelengths ranging from 405 nm to 980 nm, yielding a responsivity of more than 10 A/W. It's three times more powerful than CVD or exfoliated graphene. Two alternative control devices without the IBL on a comparable SiC substrate was explored for further confirmation of the photodetection process. (1) An exfoliated graphene layer with a premade electrode. (1) To see the effects of the IBL, a tiny layer of exfoliated graphene was used with the prefabricated electrode on only bare SiC. (2) A dummy device with only two electrodes on SiC to learn about the substrate and metal electrodes. In compared to EG/4H-SiC based devices, these two devices with just SiC (substrate) and a small layer of exfoliated graphene on SiC (without IBL) both demonstrated little photoresponse. We also discovered that our device has a binary photoresponse, i.e. (1) the photoresponse is positive under high energy excitation (405 nm to 532 nm). (2) A negative photoresponse was detected between 632 and 980 nm, with the photocurrent decreasing as the excitation energy increased.
    Our findings suggest that more theoretical research is needed to have a better understanding of the system. The effect of electrostatic gating on photo-carrier interlayer transport would be fascinating to investigate. Metal intercalation between EG and SiC systems may also have a significant impact for optoelectronic and magneto-optical properties on the system, which is worth researching. The photo induced dual charge transfer phenomenon in EG on 4H-SiC means that the electron density of EG can be modified by photon energy, which has implications in metrology such as UV photometry.

    Table of Contents 摘要……………………………………………...………………………………………………………….i Abstract…………………………………………………………………………………..…iii Acknowledgement……………………………………………………….………………....v Table of Contents………………………………………….…..………..…………………vii Index of Marks/ symbols /icons used……………………………………………………..ix List of Figures………………………………...…………………………………………….xiii List of Tables………………………………………………….……………………………xvii Chapter 1. Introduction 1 1.1 Background 1 1.2 Objective: 4 1.3 Complexity: 5 1.4 Methodology 6 Chapter 2. Background on EG/SiC-based photodetector 9 2.1 Graphene photodetector and photo detection mechanism 11 2.2 Performance figure-of merits 13 2.2.1 Responsivities 13 2.2.1 External quantum efficiency 14 2.2.2 Detectivity 14 2.2.3 Noise equipment power 15 2.2.4 Linear dynamic range 15 2.2.5 Photoresponse time 15 2.3 Fundamentals of graphene 15 2.4 Epitaxial graphene grown on SiC 17 2.4.1 Single layer: tight binding approach 18 2.5 Characterstics of graphene 21 2.5.1 Mechanical properties 21 2.5.2 Thermal properties 22 2.5.3 Electronic conductivity of graphene 24 2.5.4 Optical properties 27 2.6 Application of graphene 29 2.6.1 Biomedical engineering 30 2.6.2 Electronics 30 2.6.3 Sensor 31 2.6.4 Graphene based optoelectronic device 31 2.6.5 Other application: 32 Chapter 3. Fabrication and characterization of device 35 3.1 Material and device fabrication tool: 35 3.2 Dicing the SiC wafer into small pieces 35 3.3 Dicing and cleaning SiC wafer prior to growing graphene 36 3.4 Graphene growth technique 37 3.5 Confocal microscopy characterization 39 3.6 Atomic force microscopy 40 3.7 Raman spectroscopy 41 3.8 Fabrication of quantum Hall measurement devices 43 Chapter 4. Highly sensitive broadband binary photoresponse in gateless epitaxial graphene grown on 4H-SiC 47 4.1 Introduction 47 4.2 Result and discussion 47 4.3 Conclusion 63 Chapter 5: Summary and outlook 65 References……………. 69 List of Publications 85  

    References
    [1] F. Larki, Y. Abdi, P. Kameli, and H. Salamati, ‘An Effort Towards Full Graphene Photodetectors’, Photonic Sensors, vol. 12, no, pp. 31–67, 2020, doi: 10.1007/s13320-020-0600-7.
    [2] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, ‘Graphene photonics and optoelectronics’, Nat. Photonics, vol. 4, pp. 611–622, 2010, doi: 10.1038/nphoton.2010.186.
    [3] A. C. Ferrari, F. Bonaccorso, V. Falko, K.S. Novoselov, S. Roche, P. Boᴓgglid, S. Borini, F. Koppens, V. Palermo, N: pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, C. Galiotis, A. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, Carlo. W. J. Beenakker, L. Vanderspyen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellergini, M. Polini, A. Tredicucci, Gareth M. Williams, B. H. Hong, J. H. Ahn, J M Kim, H. Zirath, B. J. Van Wees, Here Van der Zant, L. Occhipinti, A. D. Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, Simon R.T. Neil, Q. Tannock, T. Lӧfwander, J. Kinaret, ‘Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems’, Nanoscale, vol. 7, pp. 4598–4810, 2015, doi: 10.1039/c4nr01600a.
    [4] A. C. F. Z.Sun, T.Hasan, F. Torrist, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, ‘Graphene mode-locked ultrafast laser’, in ACS Nano, vol. 4, no. 2, pp. 803–810, 2010, doi: 10.1021/nn901703e.
    [5] F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, ‘Graphene plasmonics: A platform for strong light-matter interactions’, Nano Lett., vol. 11, no. 8, pp. 8370–3377, 2011, doi: 10.1021/nl201771h.
    [6] A. N. Grigorenko, M. Polini, and K. S. Novoselov, ‘Graphene plasmonics’, Nature Photonics, vol. 6, pp. 749–758, 2012, doi: 10.1038/nphoton.2012.262.
    [7] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, ‘A graphene-based broadband optical modulator’, Nature, vol. 474, pp. 64–67, 2011, doi: 10.1038/nature10067.
    [8] A. Pospischil, M. M. Furchi, and T. Mueller, ‘Solar-energy conversion and light emission in an atomic monolayer p-n diode’, Nat. Nanotechnol., vol. 9, pp. 257–261, 2014, doi: 10.1038/nnano.2014.14.
    [9] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, ‘Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide’, Nat. Nanotechnol., vol. 9, pp. 262–267, 2014, doi: 10.1038/nnano.2014.25.
    [10] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J-H. Ahn, P. Kim, J-Y. Choi & B. H. Hong, ‘Large-scale pattern growth of graphene films for stretchable transparent electrodes’, Nature, vol. 457, pp. 706–710, 2009, doi: 10.1038/nature07719.
    [11] T. Low and P. Avouris, ‘Graphene plasmonics for terahertz to mid-infrared applications’, ACS Nano, vol. 8, no. 2, pp. 1086–1101, 2014, doi: 10.1021/nn406627u.
    [12] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, ‘Fine structure constant defines visual transparency of graphene’, Science (80)., vol. 320, no. 5881, p. 1308, 2008, doi: 10.1126/science.1156965.
    [13] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, ‘Measurement of the opptical conductivity of graphene’, Phys. Rev. Lett., vol. 101, no. 19, pp. 2–5, 2008, doi: 10.1103/PhysRevLett.101.196405.
    [14] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, ‘Ultrafast graphene photodetector’, Nat. Nanotechnol., vol. 4, no. 12, pp. 839–843, 2009, doi: 10.1038/nnano.2009.292.
    [15] C. Liu, J. Guo, L. Yu, J. Li, M. Zhang, H.Li, Y. Shi, D. Dai, 'Silicon/2D-material photodetectors: from near-infrared to mid-infrared, Light Sci Appl., vol. 10. no. 123, 2021, doi: 10.1038/s41377-021-00551-4.
    [16] M. Lipson, ‘Guiding, modulating, and emitting light on Silicon - Challenges and opportunities’, J. Light. Technol., vol. 23, no. 12, pp. 4222–4238, 2005, doi: 10.1109/JLT.2005.858225.
    [17] R. Soref, ‘The past, present, and future of silicon photonics’, IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 6, pp. 1678–1687, 2006, doi: 10.1109/JSTQE.2006.883151.
    [18] F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos and P. Avouris, ‘Photocurrent imaging and efficient photon detection in a graphene transistor’, Nano Lett., vol. 9, no. 3, pp. 1039–1044, 2009, doi: 10.1021/nl8033812.
    [19] T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, ‘Role of contacts in graphene transistors: A scanning photocurrent study’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 24, pp. 1–6, 2009, doi: 10.1103/PhysRevB.79.245430.
    [20] J. Park, Y. H. Ahn, and C. Ruiz-Vargas, ‘Imaging of photocurrent generation and collection in single-layer graphene’, Nano Lett., vol. 9, no. 5, pp. 1742–1746, 2009, doi: 10.1021/nl8029493.
    [21] Y. M. Lin, C. Dimitrakopoulosk. A. Jenkinsd. B. Farmerh.-Y. Chiua. Grilland Ph. Avouris, ‘100-GHz transistors from wafer-scale epitaxial graphene’, Science (80-. )., vol. 327, no. 5966, p. 662, 2010, doi: 10.1126/science.1184289.
    [22] A. K. Geim, ‘Graphene : Status and Prospects’, vol. 324, no. 5934, pp. 1530–1535, 2009.
    [23] T. Mueller, F. Xia, and P. Avouris, ‘Graphene photodetectors for high-speed optical communications’, Nat. Photonics, vol. 4, pp. 297–301, 2010, doi: 10.1038/nphoton.2010.40.
    [24] X. Xu, N. M. Gabor, J. S. Alden, A. M. Van Der Zande, and P. L. McEuen, ‘Photo-thermoelectric effect at a graphene interface junction’, Nano Lett., vol. 10, no. 2, pp. 562–566, 2010, doi: 10.1021/nl903451y.
    [25] A. Photodetectors, F. Withers, T. H. Bointon, M. F. Craciun, and S. Russo, ‘All-Graphene Photodetectors’, ACS Nano, vol. 7, no. 6, pp. 5052–5057, 2013, doi: 10.1021/nn4005704.
    [26] I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun, ‘Novel highly conductive and transparent graphene-based conductors’, Adv. Mater., vol. 24, no. 21, pp. 2844–2849, 2012, doi: 10.1002/adma.201200489.
    [27] M. K. Thakur, A. Gupta, S. Ghosh, and S. Chattopadhyay, ‘Graphene-Conjugated Upconversion Nanoparticles as Fluorescence-Tuned Photothermal Nanoheaters for Desalination’, ACS Appl. Nano Mater., vol. 2, no. 4, pp. 2250–2259, 2019, doi: 10.1021/acsanm.9b00186.
    [28] L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten and C. Stampfer, ‘Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper’, Sci. Adv., vol. 1, no. 6, pp. 1–6, 2015, doi: 10.1126/sciadv.1500222.
    [29] P. Avouris, Z. Chen, and V. Perebeinos, ‘Carbon-based electronics’, Nat. Nanotechnol., vol. 2, no. 10, pp. 605–615, 2007, doi: 10.1038/nnano.2007.300.
    [30] K. I. Bolotin, K. J. Sikesb, Z. Jiangad, M. Klimac, G. Fudenberga, J. Honec, P. Kima, H. L. Stormerabe, ‘Ultrahigh electron mobility in suspended graphene’, Solid State Commun., vol. 146, no. 9–10, pp. 351–355, 2008, doi: 10.1016/j.ssc.2008.02.024.
    [31] B. Campbell and J. Manning, ‘The rise of Victimhood. Culture: Microaggressions, Safe Spaces, New Cult. Wars, Springer Nat. pp. 1–265, 2018, ISBN: 978-3-319-70329-9, doi: 10.1007/978-3-319-70329-9.
    [32] K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, ‘A roadmap for graphene’, Nature, vol. 490, no. 7419, pp. 192–200, 2012, doi: 10.1038/nature11458.
    [33] K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao and Z. Liu, ‘Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation’, Nat. Commun., vol. 3, pp. 1–7, 2012, doi: 10.1038/ncomms2286.
    [34] M. K. Thakur, C.-Y. Fang, Y.-T. Yang, T. A. Effendi, P. K. Roy, R.-S. Chen, K. K. Ostrikov, W.-H. Chiang, and Surojit Chattopadhyay, ‘Microplasma-Enabled Graphene Quantum Dot-Wrapped Gold Nanoparticles with Synergistic Enhancement for Broad Band Photodetection’, ACS Appl. Mater. Interfaces, vol. 12, no. 25, pp. 28550–28560, 2020, doi: 10.1021/acsami.0c06753.
    [35] A. Gupta, M. K. Thakur, T. A. Effendi, R.-S. Chen, H.-Y. Cheng, K.-H. Lin, M. Bouras, D. S. Tomar, H. Y. Kuo and S. Chattopadhyay, ‘Metallo-graphene enhanced upconversion luminescence for broadband photodetection under polychromatic illumination’, Chem. Eng. J., vol. 420, p. 127608, 2021, doi: 10.1016/j.cej.2020.127608.
    [36] D. Sun, G. Aivazian, A. M Jones, J. S Ross, W. Yao, D. Cobden and X. Xu, ‘Ultrafast hot-carrier-dominated photocurrent in graphene’, Nat. Nanotechnol., vol. 7, no. 2, pp. 114–118, 2012, doi: 10.1038/nnano.2011.243.
    [37] A. Urich, K. Unterrainer, and T. Mueller, ‘Intrinsic response time of graphene photodetectors’, Nano Lett., vol. 11, no. 7, pp. 2804–2808, 2011, doi: 10.1021/nl2011388.
    [38] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto and A. Lanzara, ‘Substrate-induced bandgap opening in epitaxial graphene’, Nat. Mater., vol. 6, no. 10, pp. 770–775, 2007, doi: 10.1038/nmat2003.
    [39] X. Peng and R. Ahuja, ‘Symmetry breaking induced bandgap in epitaxial graphene layers on SiC’, Nano Lett., vol. 8, no. 12, pp. 4464–4468, 2008, doi: 10.1021/nl802409q.
    [40] C. Yu, J. Li, Q. B. Liu, S. B. Dun, Z. Z. He, X. W. Zhang, S. J. Cai, and Z. H. Feng, ‘Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC(0001)’, Appl. Phys. Lett., vol. 102, no. 1, 2013, doi: 10.1063/1.4773568.
    [41] Albert F. Rigosi, H. M. Hill, N. R. Glavin, S. J. Pookpanratana, Y. Yang, A. G. Boosalis, J. Hu, A. Rice, A. A. Allerman, N. V. Nguyen, C. A. Hacker, R. E. Elmquist, A. R. Hight Walker and D. B. Newell, ‘Measuring the dielectric and optical response of milimeter scale amorphous and hexagonal boron nitride grown on epitaxial graphene’, 2D Mater., vol. 5, pp. 0–35, 2018, doi: 10.1088/2053/aa9ea3.
    [42] M. S. Nevius, M. Conrad, F. Wang, A. Celis, M. N. Nair , A. Taleb-Ibrahimi , A. Tejeda and E. H. Conrad, ‘Semiconducting Graphene from Highly Ordered Substrate Interactions’, Phys. Rev. Lett., vol. 115, no. 3, pp. 1–5, 2015, doi: 10.1103/PhysRevLett.115.136802.
    [43] H. M. Hill, A. F. Rigosi , S. Chowdhury, Y. Yang, N. V. Nguyen, F. Tavazza , R. E Elmquist , D. B Newell and A. R Hight Walker, ‘Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy’, Phys. Rev. B, vol. 96, no. 19, pp. 1–7, 2017, doi: 10.1103/PhysRevB.96.195437.
    [44] I. Shtepliuk, T. Iakimov, V. Khranovskyy, J. Eriksson, F. Giannazzo, and R. Yakimova, ‘Role of the potential barrier in the electrical performance of the graphene/SiC interface’, Crystals, vol. 7, no. 6, pp. 1–18, 2017, doi: 10.3390/cryst7060162.
    [45] A. R. Panna, I.-F. Hu, M. Kruskopf, D. K. Patel, D. G. Jarrett, C.-I Liu, S. U. Payagala, D. Saha, A. F. Rigosi, D. B. Newell, C.-T. Liang, and R. E. Elmquist, ‘Graphene quantum Hall effect parallel resistance arrays’, Phys. Rev. B, vol. 103, no. 7, pp. 1–8, 2021, doi: 10.1103/PhysRevB.103.075408.
    [46] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, ‘Electric Field Effect in Atomically Thin Carbon Films’, Science, vol. 306, no. 5696, pp. 666–669, 2016, doi: 10.1126/science.1102896.
    [47] A. K. G. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, ‘Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer’, Phys. Rev. Lett., vol. 100, no. 016602, pp. 1–5, 2008, doi: 10.1103/PhyRevLett.100.016602.
    [48] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, F. H. L. Koppens, ‘Hybrid graphene-quantum dot phototransistors with ultrahigh gain’, Nat. Nanotechnol., vol. 7, no. 6, pp. 363–368, 2012, doi: 10.1038/nnano.2012.60.
    [49] J. Yan, M. Kim, J. A. Elle, A. B. Sushkov, and G. S. Jenkins, ‘Dual-gated bilayer graphene hot electron bolometer’, Nat. Nanotechnol. vol. 7, pp. 472–478, 2012, doi:10.1038/nnano.2012.88.
    [50] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, ‘Controlling the electronic structure of bilayer graphene’, Science (80-. )., vol. 313, no. 5789, pp. 951–954, 2006, doi: 10.1126/science.1130681.
    [51] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N First and W. A. de Heer, ‘Electronic confinement and coherence in patterned epitaxial graphene’, Science (80-. )., vol. 312, no. 5777, pp. 1191–1196, 2006, doi: 10.1126/science.1125925.
    [52] T. Seyller, A. Bostwick, K. V. Emtsev, K. Horn, L. Ley, J. L. McChesney, T. Ohta, J. D. Riley, E. Rotenberg and F. Speck, ‘Epitaxial graphene: A new material’, Phys. Status Solidi Basic Res., vol. 245, no. 7, pp. 1436–1446, 2008, doi: 10.1002/pssb.200844143.
    [53] R. S. Singh Q. Xiong, I. Santoso, X. Yu, W. Chen, and A. T. S. Wee, ‘Anomalous photoresponse in the deep-ultraviolet due to resonant excitonic effects in oxygen plasma treated few-layer graphene’, Carbon N. Y., vol. 106, pp. 330–335, 2016, doi: 10.1016/j.carbon.2016.05.026.
    [54] H. Bencherif, L. Dehimi, G. Messina, P. Vincent, F. Pezzimenti, and F. G. D. Corte, ‘An optimized Graphene/4H-SiC/Graphene MSM UV-photodetector operating in a wide range of temperature’, Sensors Actuators, A Phys., vol. 307, no. April, p. 112007, 2020, doi: 10.1016/j.sna.2020.112007.
    [55] J. Yang, L. Guo, Y. Guo, W. Hu, and Z. Zhang, ‘Epitaxial graphene/SiC Schottky ultraviolet photodiode with orders of magnitude adjustability in responsivity and response speed’, Appl. Phys. Lett., vol. 112, no. 10, pp. 1–5, 2018, doi: 10.1063/1.5019435.
    [56] E. Kuşdemir, D. Özkendir, V. Firat, and C. Çelebi, ‘Epitaxial graphene contact electrode for silicon carbide based ultraviolet photodetector’, J. Phys. D. Appl. Phys., vol. 48, no. 9, 2015, doi: 10.1088/0022-3727/48/9/095104.
    [57] X. Li, X. Chen, X. Xu, X. Hu, and Z. Zuo, ‘Enhanced performance of a visible light detector made with quasi-free-standing graphene on SiC’, Materials (Basel)., vol. 12, no. 19, pp. 1–10, 2019, doi: 10.3390/ma12193227.
    [58] B. K. Sarker, E. Cazalas, T. F. Chung, I. Childres, I. Jovanovic, and Y. P. Chen, ‘Position-dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC’, Nat. Nanotechnol., vol. 12, no. 7, pp. 668–674, 2017, doi: 10.1038/nnano.2017.46.
    [59] N. Z. Butt, B. K. Sarker, Y. P. Chen, and M. A. Alam, ‘Substrate-Induced Photofield Effect in Graphene Phototransistors’, IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3734–3741, 2015, doi: 10.1109/TED.2015.2475643.
    [60] S. Sonde, F. Giannazzo, V. Raineri, R. Yakimova, J.-R. Huntzinger, A. Tiberj, and J. Camassel, ‘Electrical properties of the graphene/ 4H-SiC (0001) interface probed by scanning current spectroscopy’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 80, no. 24, pp. 4–7, 2009, doi: 10.1103/PhysRevB.80.241406.
    [61] E. Cazalas, I. Childres, A. Majcher, T. F. Chung, Y. P. Chen, and I. Jovanovic, ‘Hysteretic response of chemical vapor deposition graphene field effect transistors on SiC substrates’, Appl. Phys. Lett., vol. 103, no. 5, pp. 1–5, 2013, doi: 10.1063/1.4816426.
    [62] R. Sun. Y. Zhang, K. Li, C. Hui, K. He, X. Ma, and F. Liu, ‘Tunable photoresponse of epitaxial graphene on SiC’, Appl. Phys. Lett., vol. 103, no. 1, 2013, doi: 10.1063/1.4812986.
    [63] J. Huang. L.-W. Guo, W. Lu, Y.-H. Zhang, Z. Shi, Y.-P. Jia, Z.-L. Li, J.-W. Yang, H.-X. Chen, Z.-X. Mei, and X.-L. Chen, ‘A self-powered sensitive ultraviolet photodetector based on epitaxial graphene on silicon carbide’, Chinese Phys. B, vol. 25, no. 6, 2016, doi: 10.1088/1674-1056/25/6/067205.
    [64] Y. Li, P. Chen, X. Chen, R. Xu, M. Liu, J. Zhou, C. Ge, H. Peng, X. Mao, J. Feng, X. Hu, Y. Peng, X. Xu, Z. Xie, X. Xiu, D. Chen, B. Liu, P. Han, Y. Shi, R. Zhang and Y. Zheng, ‘High-Responsivity Graphene/4H-SiC Ultraviolet Photodetector Based on a Planar Junction Formed by the Dual Modulation of Electric and Light Fields’, Adv. Opt. Mater., vol. 8, no. 19, pp. 1–8, 2020, doi: 10.1002/adom.202000559.
    [65] J. A. Alexander-Webber, A. M. R. Baker, T. J. B. M. Janssen, A. Tzalenchuk, S. Lara-Avila, S. Kubatkin, R. Yakimova, B. A. Piot, D. K. Maude, and R. J. Nicholas, ‘Phase space for the breakdown of the quantum hall effect in epitaxial graphene’, Phys. Rev. Lett., vol. 111, no. 9, pp. 1–5, 2013, doi: 10.1103/PhysRevLett.111.096601.
    [66] J. A. Alexander-Webber, J. Huang, D. K. Maude, T. J. B. M. Janssen, A. Tzalenchuk, V. Antonov, T. Yager, S. Lara-Avila , S. Kubatkin, R. Yakimova and R. J. Nicholas , ‘Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene’, Sci. Rep., vol. 6, no. July, pp. 1–12, 2016, doi: 10.1038/srep30296.
    [67] M. Kruskopf and R. E. Elmquist, ‘Epitaxial graphene for quantum resistance metrology’, Metrologia, vol. 55, no. 4, pp. R27–R36, 2018, doi: 10.1088/1681-7575/aacd23.
    [68] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, ‘Efficient tandem polymer solar cells fabricated by all-solution processing’, Science, vol. 317, no. 5835, pp. 222–225, 2007, doi: 10.1126/science.1141711.
    [69] J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Yunqing Chen, ‘Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible’, Appl. Phys. Lett., vol. 93, no. 13, 2008, doi: 10.1063/1.2990753.
    [70] S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, ‘Position dependent photodetector from large area reduced graphene oxide thin films’, Appl. Phys. Lett., vol. 96, no. 16, pp. 94–97, 2010, doi: 10.1063/1.3415499.
    [71] A. J. Van Bommel, J. E. Crombeen, A. van Tooren ‘LEED and Auger electron observations of the SiC(0001) surface’. Surf. Sci., vol. 48, pp. 463–472, 1975, doi: 10.1016/0039-6028(75)90419-7.
    [72] Z. Guo, R. Dong, P.S Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan, J. Hankinson, J. Kunc. J. D. Cressler, C. Berger, and W. A. de Heer, ‘Record maximum oscillation frequency in C-face epitaxial graphene transistors, Nano Lett., vol. 13, no. 3, pp. 942–947, 2013, doi: 10.1021/nl303587r.
    [73] S. K. Lilov, ‘Study of the equilibrium processes in the gas phase during silicon carbide sublimation’, Mater. Sci. Eng. B, vol. 21, no. 1, pp. 65–69, 1993, doi: 10.1016/0921-5107(93)90267-Q.
    [74] D. K. G. G. G. Jernigan, B. L. VanMil, J. L. Tedesco, J. G. Tischler, E. R. Glaser, A. III. Davidson, P. M. Campbell, ‘Comparison of epitaxial graphene on si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production, Nano Lett., vol. 9, no. 7, pp. 2605–2609, 2009, doi: 10.1021/nl900803z.
    [75] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, ‘Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B., vol. 108, no. 52, pp. 19912–19916, 2004, doi: 10.1021/jp040650f.
    [76] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, ‘Exceptional ballistic transport in epitaxial graphene nanoribbons’, Nature, vol. 506, no. 7488, pp. 349–354, 2014, doi: 10.1038/nature12952.
    [77] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and Ph. Avouris, ‘100-GHz Transistors from wafer-scale epitaxial graphene’, Science, Vol 327, Issue 5966, p. 662, 2010, DOI: 10.1126/science.1184289
    [78] A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T. J. B. M. Janssen, V. Fal’ko, and S. Kubatkin, ‘Towards a quantum resistance standard based on epitaxial graphene’, Nat. Nanotechnol., vol. 5, no. 3, pp. 186–189, 2010, doi: 10.1038/nnano.2009.474.
    [79] J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, M.S. Nevius, F. Wang, K. Shepperd, J. Palmer, F. Bertran, P. Le F`evre, J. Kunc, W.A. de Heer, C. Berger, and E. H. Conrad, ‘A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene’, Nat. Phys., vol. 9, no. 1, pp. 49–54, 2013, doi: 10.1038/nphys2487.
    [80] G. R. Yezdi, T. lakimov, and R. Yakimova, ‘Epitaxial graphene on SiC: A review of growth and characterization’, Crystals, vol. 6, no. 5, 2016, doi: 10.3390/cryst6050053.
    [81] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, ‘Measurement of ultrafast carrier dynamics in epitaxial graphene’, Appl. Phys. Lett., vol. 92, no. 4, pp. 126–129, 2008, doi: 10.1063/1.2837539.
    [72] D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo and M. Polini, ‘Ultrafast collinear scattering and carrier multiplication in graphene’, Nat. Commun., vol. 4, no. May, 2013, doi: 10.1038/ncomms2987.
    [73] E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, ‘Contact and edge effects in graphene devices’, Nat. Nanotechnol., vol. 3, no. 8, pp. 486–490, 2008, doi: 10.1038/nnano.2008.172.
    [74] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, ‘Photodetectors based on graphene other two-dimensional materials and hybrid systems’, Nat. Nanotechnol., vol. 9, no. 10, pp. 780–793, 2014, doi: 10.1038/nnano.2014.215.
    [75] T. Zhu, ‘ROOM TEMPERATURE OPERATED SOLUTION-PROCESSED NEAR-INFRARED PHOTODETECTORS’, A master thesis, The Universitz of Akron, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron153942882165767.
    [76] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices: Third Edition. John Willey & Sons,Inc, 2006, ISBN: 9780470068328, doi: 10.1002/0470068329.
    [77] M. Hiramoto, T. Imahigashi, and M. Yokoyama, ‘Photocurrent multiplication in organic pigment films’, Appl. Phys. Lett., vol. 64, no. 2, pp. 187–189, 1994, doi: 10.1063/1.111527.
    [78] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, ‘Ultrafast graphene photodetector’, Nat. Nanotechnol., vol. 4, no. 12, pp. 839–843, 2009, doi: 10.1038/nnano.2009.292.
    [79] A. K. G. Neto, A. H. Castro; F. Guinea, N. M. R. Peres, K. S. Novoselov, ‘The electronic properties of graphene’, Rev Mod Phys., vol. 81, no. 1, pp. 109-162, 2009, doi: 10.1103/RevModPhys.81.109.
    [80] H. Raza, Graphene nanoelectronics metrology synthesis properties and applications, Book. Springer; 2012th edition, ISBN-13: ‎ 978-3-642-22984-8, doi:10.1007/978-3-642-22984-8.
    [81] Q. X. Pei, Y. W. Zhang, and V. B. Shenoy, ‘A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene’, Carbon N. Y., vol. 48, no. 3, pp. 898–904, 2010, doi: 10.1016/j.carbon.2009.11.014.
    [82] C. Dong, ‘Comment on Advanced mechanical properties of graphene paper, J. Appl. Phys., vol. 111, no. 10, 2012, doi: 10.1063/1.4719083.
    [83] A. A. Balandin, ‘Thermal properties of graphene and nanostructured carbon materials’, Nat. Mater., vol. 10, no. 8, pp. 569–581, 2011, doi: 10.1038/nmat3064.
    [84] T. Ogino, ‘The Nobel Prize in Physics 2010’, Hyomen Kagaku, vol. 31, no. 12, pp. 682–682, 2010, doi: 10.1380/jsssj.31.682.
    [85] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, ‘Intrinsic and extrinsic performance limits of graphene devices on SiO 2’, Nat. Nanotechnol., vol. 3, no. 4, pp. 206–209, 2008, doi: 10.1038/nnano.2008.58.
    [86] V. Dhinakaran, M. Lavanya, K. Vigneswari, M. Ravichandran, and M. D. Vijayakumar, ‘Review on exploration of graphene in diverse applications and its future horizon’, Mater. Today Proc., vol. 27, no. 2, pp. 824–828, 2020, doi: 10.1016/j.matpr.2019. 12 369.
    [87] S. Goenka, V. Sant, and S. Sant, ‘Graphene-based nanomaterials for drug delivery and tissue engineering’, J. Control. Release., vol. 173, no. 1, pp. 75–88, 2014, doi: 10.1016/j.jconrel.2013.10.017.
    [88] B. E. Yamamoto, A. Z. Trimble, B. Minei, and M. N. Ghasemi Nejhad, ‘Development of multifunctional nanocomposites with 3-D printing additive manufacturing and low graphene loading’, J. Thermoplast. Compos. Mater., vol. 32, no. 3, pp. 383–408, 2019, doi: 10.1177/0892705718759390.
    [89] E. Yoo and H. Zhou, ‘Li - Air Rechargeable Battery Based on metal-free graphene nanosheet catalyst’, Am. Chem. Soc., vol. 5, no. 4, pp. 3020–3026, 2011, doi:10.1021/nn200084u.
    [90] Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, ‘Graphene-antenna sandwich photodetector’, Nano Lett., vol. 12, no. 7, pp. 3808–3813, 2012, doi: 10.1021/nl301774e.
    [91] S. Fernández, A. Molinero, D. Sanz, J. P. González, M. d. l. Cruz, J. J. Gandía and J. Cárabe, ‘Graphene-based contacts for optoelectronic devices’, Micromachines, vol. 11, no. 10, pp. 1–14, 2020, doi: 10.3390/mi11100919.
    [92] J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, and D. Snyde, ‘Contacting graphene’, Appl. Phys. Lett., vol. 98, no. 5, pp. 96–99, 2011, doi: 10.1063/1.3549183.
    [93] M. A. Real, E. A. Lass, F.-H. Liu, T. Shen, G. R. Jones, J. A. Soons, D. B. Newell, A. V. Davydov, R. E. Elmquist, ‘Graphene Epitaxial growth on SiC(0001) for resistance standards’, IEEE Trans. Instrum. Meas., vol. 62, no. 6, pp. 1454–1460, 2013, doi: 10.1109/TIM.2012.2225962.
    [94] Y. Yang, G. Chenga, P. Mendeb, I. G.Calizo, R. M. Feenstra, C. Chuang, C.-W. Liu, C.-I. Liu, G. R. Jones, A. R. H. Walker and R. E. Elmquist, ‘Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices’, Carbon N. Y., vol. 115, pp. 229–236, 2017, doi: 10.1016/j.carbon.2016.12.087.
    [95] M. Kruskopf, D. M. Pakdehi, K. Pierz, S. Wundrack, R. Stosch, T. Dziomba, M. Götz, J. Baringhaus, J. Aprojanz, C. Tegenkamp, J. Lidzba, T. Seyller, F. Hohls, F. J Ahlers and H. W Schumacher, ‘Comeback of epitaxial graphene for electronics: Large-area growth of bilayer-free graphene on SiC’, 2D Mater., vol. 3, no. 4, 2016, doi: 10.1088/2053-1583/3/4/041002.
    [96] T. Schumann, K. J. Friedland, M. H. Oliveira, A. Tahraoui, J. M. J. Lopes, and H. Riechert, ‘Anisotropic quantum Hall effect in epitaxial graphene on stepped SiC surfaces’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 23, pp. 1–5, 2012, doi: 10.1103/PhysRevB.85.235402.
    [97] M. K. Yakes, D. Gunlycke, J. L. Tedesco, P. M. Campbell, R. L. Myers-Ward, C. R. Eddy Jr, D. K. Gaskill, P. E. Sheehan, A. R. Laracuente, ‘Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions’, Nano Lett., vol. 10, no. 5, pp. 1559–1562, 2010, doi: 10.1021/nl9035302.
    [98] H. Nakagawa, S. Tanaka, and I. Suemune, ‘Self-ordering of nanofacets on vicinal sic surfaces’, Phys. Rev. Lett., vol. 91, no. 22, pp. 2–5, 2003, doi: 10.1103/PhysRevLett.91.226107.
    [99] C. Virojanadara, M. Syväjarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian, ‘Homogeneous large-area graphene layer growth on 6H-SiC(0001)’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, no. 24, pp. 1–6, 2008, doi: 10.1103/PhysRevB.78.245403.
    [100] M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi, ‘Local conductance measurement of few-layer graphene on SiC substrate using an integrated nanogap probe’, J. Phys. Conf. Ser., vol. 100, no. PART 5, 2008, doi: 10.1088/1742-6596/100/5/052006.
    [101] T. Low, V. Perebeinos, J. Tersoff, and P. Avouris, ‘Deformation and scattering in graphene over substrate steps’, Phys. Rev. Lett., vol. 108, no. 9, pp. 1–4, 2012, doi: 10.1103/PhysRevLett.108.096601.
    [102] D. M. Pakdehi, J. Aprojanz, A. Sinterhauf , K. Pierz , M. Kruskopf , P. Willke , J. Baringhaus , J. P. Stöckmann, G. A. Traeger, F. Hohls, C. Tegenkamp, M. Wenderoth, F. J. Ahlers and H. W. Schumacher, ‘Minimum Resistance Anisotropy of Epitaxial Graphene on SiC’, ACS Appl. Mater. Interfaces, vol. 10, no. 6, pp. 6039–6045, 2018, doi: 10.1021/acsami.7b18641.
    [103] M. Kruskopf, J. Hu, B.-Y. Wu, Y. Yang, H.-Y. Lee, A. F. Rigosi, D. B. Newell and R. E. Elmquist, ‘Epitaxial Graphene for High-Current QHE Resistance Standards’, CPEM 2018 - Conf. Precis. Electromagn. Meas., no. 0001, pp. 3–5, 2018, doi: 10.1109/CPEM.2018.8500893.
    [104] D. S. Lee, C. Riedl, B. Krauss, K. Von Klitzing, U. Starke, and J. H. Smet, ‘Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2’, Nano Lett., vol. 8, no. 12, pp. 4320–4325, 2008, doi: 10.1021/nl802156w.
    [105] J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. M.-Ward, C. R. Eddy, Jr., and D. K. Gaskill, ‘Correlating raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale’, Nano Lett., vol. 9, no. 8, pp. 2873–2876, 2009, doi: 10.1021/nl901073g.
    [106] F. Fromm, M. H. Oliveira Jr, A. Molina-Sánchez, M. Hundhausen, J. M. J. Lopes, H. Riechert, L. Wirtz and T. Seyller, ‘Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001)’, New J. Phys., vol. 15, no. 100, 2013, doi: 10.1088/1367-2630/15/4/043031.
    [107] Y. Yang, L.-I. Huang, Y. Fukuyama, F.-H. Liu, M. A. Real, P. Barbara, C.-T. Liang, D. B. Newell and R. E. Elmquist, ‘Low carrier density epitaxial graphene devices on SiC’, Small, vol. 11, no. 1, pp. 90–95, 2015, doi: 10.1002/smll.201400989.
    [108] M. Kruskopf, A, F. Rigosi, A. R. Panna, D. K. Patel, H. Jin, M. Marzano, M. Berilla, D. B. Newell and R. E. Elmquist, ‘Two-Terminal and Multi-Terminal Designs for Next-Generation Quantized Hall Resistance Standards: Contact Material and Geometry’, IEEE Trans. Electron Devices, vol. 66, no. 9, pp. 3973–3977, 2019, doi: 10.1109/TED.2019.2926684.
    [109] M. Kruskopf, A. F. Rigosi, A. R. Panna, M. Marzano, D. Patel, H. Jin, D. B. Newell and R. E Elmquist, ‘Next-generation crossover-free quantum Hall arrays with superconducting interconnections’, Metrologia, vol. 56, no. 6, 2019, doi: 10.1088/1681-7575/AB3BA3.
    [110] V. Panchal, Y. Yang, G. Cheng, J. Hu, M. Kruskopf, C.-I Liu, A. F. Rigosi, C. Melios, A. R. H. Walker, D. B. Newell, O. Kazakova and Randolph E Elmquist, ‘Confocal laser scanning microscopy for rapid optical characterization of graphene’, Commun. Phys., vol. 1, no. 1, pp. 1–7, 2018, doi: 10.1038/s42005-018-0084-6.
    [111] C. Y. Wang, Y.-W. Lin, C. Chuang, C.-H. Yang, D. K. Patel, S.-Z. Chen, C.-C. Yeh, W.-C. Chen, C.-C. Lin, Y-H. Chen, W.-H. Wang, R. Sankar, F.-C. Chou, M. Kruskopf, R. E Elmquist and Chi-Te Liang, ‘Magnetotransport in hybrid InSe/monolayer graphene on SiC’, Nanotechnology, vol. 32, no. 15, 2021, doi: 10.1088/1361-6528/abd726.
    [112] G. Haider, P. Roy, C.-W. Chiang, W.-C. Tan, Y.-R. Liou, H.-T. Chang, C.-T. Liang, W.-H. Shih and Y.-F. Chen, ‘Electrical-Polarization-Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots’, Adv. Funct. Mater., vol. 26, no. 4, pp. 620–628, 2016, doi: 10.1002/adfm.201503691.
    [113] G. Haider, R. Ravindranath, T.-P. Chen, P. Roy, P. K. Roy, S.-Y. Cai, H.-T. Chang and Y.-F. Chen, ‘Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions’, Nat. Commun., vol. 8, no. 1, 2017, doi: 10.1038/s41467-017-00345-6.
    [114] K. P. Bera, G. Haider, M. Usman, P. K. Roy, H.-I Lin, Y.-M. Liao, C. R. P. Inbaraj, Y.-R. Liou, M. Kataria, K.-L. Lu and Y.-F. Chen, ‘Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors’, Adv. Funct. Mater., vol. 28, no. 51, pp. 1–13, 2018, doi: 10.1002/adfm.201804802.
    [115] K. P. Bera, G. Haider, Y.-T. Huang, P. K. Roy, C. R. P. Inbaraj, Y.-M. Liao, H.-I Lin, C.-H. Lu, C. Shen, W. Y. Shih, W.-H. Shih and Y.-F. Chen, ‘Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors’, ACS Nano, vol. 13, no. 11, pp. 12540–12552, 2019, doi: 10.1021/acsnano.9b03165.
    [116] C. Heide, M. Hauck, T. Higuchi, J. Ristein, L. Ley, H. B. Weber and P. Hommelhoff, ‘Attosecond-fast internal photoemission’, Nat. Photonics, vol. 14, no. 4, pp. 219–222, 2020, doi: 10.1038/s41566-019-0580-6.
    [117] A. F. Rigosi, N. R. Glavin, C.-I. Liu, Y. Yang, J. Obrzut, H. M. Hill, J. Hu, H.-Y. Lee, A. R. H. Walker, C. A. Richter, R. E. Elmquist and David B Newell, ‘Preservation of Surface Conductivity and Dielectric Loss Tangent in Large-Scale, Encapsulated Epitaxial Graphene Measured by Noncontact Microwave Cavity Perturbations’, Small, vol. 13, no. 26, pp. 1–7, 2017, doi: 10.1002/smll.201700452.
    [118] Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade, L. Li and Haitao Liu,‘Effect of airborne contaminants on the wettability of supported graphene and graphite’, Nat. Mater., vol. 12, no. 10, pp. 925–931, 2013, doi: 10.1038/nmat3709.
    [119] A. Kozbial, F. Zhou, Z. Li, H. Liu, and L. Li, ‘Are Graphitic Surfaces Hydrophobic?’, Acc. Chem. Res., vol. 49, no. 12, pp. 2765–2773, 2016, doi: 10.1021/acs.accounts.6b00447.
    [120] G. Haider, Y.-H. Wang, F. J. Sonia, C.-W. Chiang, O. Frank, J. Vejpravova, M. Kalbáč and Y.-F. Chen, ‘Rippled Metallic-Nanowire/Graphene/Semiconductor Nanostack for a Gate-Tunable Ultrahigh-Performance Stretchable Phototransistor’, Adv. Opt. Mater., vol. 8, no. 19, pp. 1–10, 2020, doi: 10.1002/adom.202000859.
    [121] W. Yuan and G. Shi, ‘Graphene-based gas sensors’, J. Mater. Chem. A, vol. 1, no. 35, pp. 10078–10091, 2013, doi: 10.1039/c3ta11774j.
    [122] T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. Anamul Haque, T. Nakajima and J. P. Gong, ‘Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity’, Nat. Mater., vol. 12, no. 10, pp. 932–937, 2013, doi: 10.1038/nmat3713.
    [123] C. J. Docherty, C.-T. Lin, H. J. Joyce1, R. J. Nicholas1, L. M. Herz, L.-J. Li and M. B. Johnston1, ‘Extreme sensitivity of graphene photoconductivity to environmental gases’, Nat. Commun., vol. 3, pp. 1226–1228, 2012, doi: 10.1038/ncomms2235.
    [124] M. Z. Iqbal, S. Siddique, A. Khan, D. Sung, J. Eom, and S. Hong, ‘Ultraviolet-light-driven charge carriers tunability mechanism in graphene’, Mater. Des., vol. 159, pp. 232–239, 2018, doi: 10.1016/j.matdes.2018.08.049.
    [125] M. K. Thakur, A. Gupta, M. Y. Fakhri, R. S. Chen, C. T. Wu, K. H. Lin and S. Chattopadhyay, ‘Optically coupled engineered upconversion nanoparticles and graphene for a high responsivity broadband photodetector’, Nanoscale, vol. 11, no. 19, pp. 9716–9725, 2019, doi: 10.1039/c8nr10280e.
    [126] Z. Liu, H. Huang, B. Liang, X. Wang, Z. Wang, and D. Chen, ‘Zn2GeO4 and In2Ge2O7 Ultraviolet Photodetectors on Rigid and Flexible Substrates’, Opt. Express, vol. 20, no. 3, pp. 2982-2991, 2012, doi: 10.1364/OE.20.002982.
    [127] B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, ‘Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates’, arXiv, 2015, doi: 10.48550/arXiv.1409.5725.
    [128] V. S. N. Chava, B. G. Barker Jr., A. Balachandran, A. Khan1, G. Simin, A. B. Greytak, and M. V. S. Chandrashekhar, ‘High detectivity visible-blind SiF4 grown epitaxial graphene/SiC Schottky contact bipolar phototransistor’, Appl. Phys. Lett., vol. 111, no. 24, 2017, doi: 10.1063/1.5009003.
    [129] A. F. Rigosi, D. Patel, M. Marzano, M. Kruskopf, H. M.Hill, H. Jin, J. Hu, A. R. Hight Walker, M, Ortolano, L. Callegaro, C.-T. Liang and D. B.Newell, ‘Atypical quantized resistances in millimeter-scale epitaxial graphene p-n junctions’, Carbon N. Y., vol. 154, pp. 230–237, 2019, doi: 10.1016/j.carbon.2019.08.002.
    [140] D. Patel et al., ‘Accessing ratios of quantized resistances in graphene p - N junction devices using multiple terminals’, AIP Adv., vol. 10, no. 2, 2020, doi: 10.1063/1.5138901.
    [141] C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, ‘Graphene photodetectors with ultra-broadband and high responsivity at room temperature’, Nat. Nanotechnol., vol. 9, no. 4, pp. 273–278, 2014, doi: 10.1038/nnano.2014.31.

    QR CODE