簡易檢索 / 詳目顯示

研究生: 黃雅琴
Ya-Qin Huang
論文名稱: 以射頻矽甲烷電漿輔助化學氣相沉積法製備非晶矽薄膜太陽能電池元件之研究
Amorphous Silicon Thin Film Solar Cells Prepared by RF SiH4-PECVD System
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 曾弘毅
Henry Tseng
翁得期
Techi Wong
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 125
中文關鍵詞: 射頻電漿輔助化學氣相沉積矽甲烷非晶矽非晶碳化矽薄膜太陽能電池
外文關鍵詞: RF-PECVD, silane, a-Si:H, a-SiC:H, thin film solar cell
相關次數: 點閱:456下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以射頻矽甲烷電漿輔助化學氣相沉積系統,藉由調配適當的反應參數如基材溫度、反應壓力及甲烷摻雜比等,分別進行本質非晶矽及p型非晶碳化矽薄膜之沉積,並針對薄膜的結構及光電性質加以分析,以設計出非晶矽薄膜太陽能電池元件的最適化製程。
    實驗結果顯示,當控制基材溫度為170oC、反應壓力為200 mTorr時,所沉積的非晶矽薄膜之光學能隙為1.75 eV;在電性表現方面,其暗導電率為7.97×10-10 S/cm,且光敏感程度達3.49×104。
    另一方面,針對p型非晶碳化矽薄膜的製備,藉由通入甲烷至矽甲烷電漿形成寬能隙的非晶碳化矽薄膜將有效提升薄膜的光學性質,當甲烷對矽甲烷流量比為0.5時,所成長的p型非晶碳化矽薄膜的暗導電率為2.36×10-7 S/cm,且光學能隙可達到2.01 eV,其電性及光學性質適宜作為非晶矽薄膜太陽能電池元件窗口層的應用。
    最後,利用多重腔體連結式PECVD裝置製作單層接面非晶矽薄膜太陽能電池,現階段所得最佳元件之開路電壓、短路電流及填充係數分為828 mV、14.56 mA/cm2及64.95 %,光電轉換效率達7.83 %。


    In this thesis, the intrinsic hydrogenated amorphous silicon (a-Si:H) thin films and p-type hydrogenated amorphous silicon carbide (a-SiC:H) thin film were deposited on glass by radio-frequency silane plasma enhanced chemical vapor deposition system. The thin films were prepared under different experimental parameters, such as substrate temperature, reaction pressure and methane flow ratio. For optimization of the layer, the dependence of electrical and optical properties were investigated.
    In the first part, we deposited intrinsic a-Si:H by altering the deposition condition. We set up the substrate temperature at 170oC and reaction pressure at 200 mTorr, the optical band gap of the film deposited was 1.75 eV. The dark conductivity and photosensitivity were 7.97×10-10 S/cm and 3.49×104, respectively.
    In the second part, we deposited p-type a-SiC:H with silane and methane. The dark conductivity and optical gap of the film deposited at [CH4]/[SiH4] = 0.5 were 2.36×10-7 S/cm and 2.01 eV, respectively. The result showed that the films were more transparent than amorphous silicon.
    Finally, we deposited amorphous silicon thin film solar cell. The short-circuit current(Jsc), open-circuit voltage(Voc) and fill factor(FF) of device were 14.56 mA/cm2, 828 mV and 64.95 %, respectively. The optoelectronic conversion efficiency of 7.83 % was achieved.

    摘要 I Abstract II 誌 謝 III 目 錄 V 圖 索 引 VIII 表 索 引 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2.1非晶矽薄膜 4 2.1.1非晶矽的原子結構及其基本特性 4 2.1.2非晶矽的能帶結構 7 2.1.3非晶矽薄膜的摻雜 10 2.1.4非晶矽薄膜的光致衰退現象 11 2.2 以電漿輔助化學氣相沉積法製備非晶矽薄膜 13 2.2.1射頻電漿輔助化學氣相沉積法 13 2.2.2矽甲烷電漿分解程序 14 2.2.3非晶矽薄膜成長機制 17 2.3 非晶矽薄膜隙態密度與光吸收邊緣曲線之關係 19 2.4 矽氫鍵結對非晶矽薄膜的影響 22 2.5 懸鍵缺陷及弱鍵分布情形對非晶矽薄膜的影響 25 2.6 非晶碳化矽薄膜 26 2.7 非晶矽薄膜太陽能電池元件結構及光電轉換原理 27 2.7.1非晶矽薄膜太陽能電池元件結構 27 2.7.2非晶矽薄膜太陽能電池光電轉換原理 30 第三章 實驗方法與步驟 31 3.1實驗流程圖 31 3.2 實驗藥品及氣體 32 3.3 實驗裝置 35 3.4 分析儀器 37 3.4.1表面形態輪廓儀 (surface profiler) 37 3.4.2拉曼光譜儀 (Raman) 38 3.4.3傅立葉紅外線光譜儀 (FTIR) 39 3.4.4紫外光/可見光光譜儀 (UV/VIS) 40 3.4.5 X射線電子能譜化學分析儀 (XPS) 43 3.4.6 IV量測系統 (IV) 44 3.4.7太陽光模擬器 (solar simulator) 46 3.4.8分光效率量測儀 (IPCE) 50 3.5 實驗步驟 51 3.5.1玻璃基材清洗 51 3.5.2成長非晶矽薄膜及非晶碳化矽薄膜 52 3.5.3成長非晶矽薄膜太陽能電池元件 53 第四章 實驗結果與討論 54 4.1 成長本質非晶矽薄膜 54 4.1.1 基材溫度對非晶矽薄膜的影響 54 4.1.2 反應壓力對非晶矽薄膜的影響 69 4.2 成長p型非晶碳化矽薄膜 85 4.3 非晶矽薄膜太陽能電池 98 4.3.1吸收層沉積條件對太陽能電池元件的影響 98 4.3.2窗口層沉積條件對太陽能電池元件的影響 105 第五章 結論 113 參考文獻 116 作者簡介 125

    1. Microdevices, N., 太陽電池-日本的勝算, pp.28 (2008)
    2. Isomura, M., M. Kondo, and A. Matsuda, “Effects of Hydrogen Diluted Silane Plasma on Amorphous Silicon Solar Cells” Jpn. J. Appl. Phys., Vol.39, pp.4721-4726 (2000)
    3. Hishikawa, Y., Tsuda, S., Wakisaka, K., and Kuwano, Y., “Principles for Controlling the Optical and Electrical-Properties of Hydrogenated Amorphous-Silicon Deposited from Silane Plasma” J. Appl. Phys., Vol.73, pp.4227-4231 (1993)
    4. Mullerova, J., Jurecka, S., Sutta, P., and Mikula, M., “Structural and Optical Studies of a-Si:H Thin Films: from Amorphous to Nanocrystalline Silicon” Acta Phys. Slovaca., Vol.55, pp.351-359 (2005)
    5. Kasap, S.O., Principles of Electronic Materials and Devices, pp.81 (2006)
    6. Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., and Bailat, J., “Thin-Film Silicon Solar Cell Technology” Prog. Photovolt: Res. Appl., Vol.12 pp.113-142 (2004)
    7. Cohen, M.H., Fritzsch.H, and Ovshinsk.Sr, “Simple Band Model for Amorphous Semiconducting Alloys” Phys. Rev. Lett., Vol.22, pp.1065-1068 (1969)
    8. Carson, D.E. and C.R. Wronski, “Amorphous Silicon Solar Cells” Pennsylvania State University, USA (2007)
    9. Spear, W.E. and P.G. Lecomber, “Substitutional Doping of Amorphous Silicon” Solid State Commun., Vol.17, pp.1193-1196 (1975)
    10. Staebler, D.L. and C.R. Wronski, “Reversible Conductivity Changes in Discharge-Produced Amorphous Si” Appl. Phys. Lett., Vol.31, pp.292-294 (1977).
    11. Kim, D.Y., I.S. Kim, and S.Y. Choi, “Electrical Properties of a-Si:H Thin Films as a Function of Bonding Configuration” Sol. Energy Mater. & Sol. Cells., Vol.93, pp.239-243 (2009)
    12. Pinarbasi, M., M.J. Kushner, and J.R. Abelson, “Effect of Hydrogen Content on The Light-Induced Defect Generation in Direct-Current Magnetron Reactively” J. Appl. Phys., Vol.68, pp.2255-2264 (1990)
    13. Branz, H.M., “Hydrogen Collision Model of Light-Induced Metastability in Hydrogenated Amorphous Silicon” Solid State Commun., Vol.105, pp387-391 (1998)
    14. Pantchev, B., Danesh, P., Antonova, K., Schmidt, B., Grambole, D., and Baran, J., “Effect of Film Thickness on Hydrogen Content in a-Si:H” J. Mater. Sci.- Mater. Electron., Vol.14, pp.751-752 (2003)
    15. Hishikawa, Y., Sasaki, M., Tsuge, S., and Tsuda, S., “Effect of Heating SiH4 on the Plasma Chemical-Vapor Deposition of Hydrogenated Amorphous-Silicon” Jpn. J. Appl. Phys., Vol.33, pp.4373-4376 (1994)
    16. Miyahara, H., Takai, M., Nishimoto, T., Kondo, M., and Matsuda, A., “Electrode Distance Dependence of Photo-Induced Degradation in Hydrogenated Amorphous Silicon” Sol. Energy Mater. & Sol. Cells., Vol.74, pp.351-356 (2002)
    17. Matsuda, A., Takai, M., Nishimoto, T., and Kondo, M., “Control of Plasma Chemistry for Preparing Highly Stabilized Amorphous Silicon at High Growth Rate” Sol. Energy Mater. & Sol. Cells., Vol.78, pp.3-26 (2003)
    18. Matsuda, A., “Recent Understanding of the Growth Process of Amorphous Silicon from a Silane Glow-Discharge Plasma” Plasma Phys Contr Fusion., Vol.39, pp.431-436 (1997)
    19. Matsuda, A., “Thin-Film Silicon - Growth Process and Solar Cell Application” Jpn. J. Appl. Phys., Vol.43, pp.7909-7920 (2004)
    20. Perrin, J., “Plasma and Surface-Reactions During a-Si-H Film Growth” J. Non-Cryst. Solids., Vol.137, pp.639-644 (1991)
    21. Kawase, M., Masuda, T., Nagashima, M., Maki, T., Miyamoto, Y., and Hashimoto, K., “Effects of Plasma-Substrate Distance on Properties of Hydrogenated Amorphous-Silicon Deposited from Hydrogen-Diluted Silane” Jpn. J. Appl. Phys., Vol.33, pp.3830-3836 (1994)
    22. Robertson, J. and M.J. Powell, “Deposition, Defect and Weak Bond Formation Processes in a-Si:H” Thin Solid Films, Vol.337, pp.32-36 (1999)
    23. Robertson, J., “Growth Mechanism of Hydrogenated Amorphous Silicon” J. Non-Cryst. Solids., Vol.266, pp.79-83 (2000).
    24. Hishikawa, Y., Nakamura, N., Tsuda, S., Nakano, S., Kishi, Y., and Kuwano, Y., “Interference-Free Determination of the Optical-Absorption Coefficient and the Optical Gap of Amorphous-Silicon Thin-Films” Jpn. J. Appl. Phys., Vol.30, pp.1008-1014 (1991)
    25. J. Poortmans, V.A., Thin Film Solar Cells Fabrication, Characterization and Application, John Wiley and Sons, pp.182 (2006)
    26. Tauc, J., “Absorption Edge and Internal Electric Fields in Amorphous Semiconductors” Mater. Res. Bull., Vol.5, pp.721-730 (1970)
    27. Urbach, F., “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic” Phys. Rev., Vol.92, pp.1324-1324 (1953)
    28. Wang, Y.H., J. Lin, and C.H.A. Huan, “Structural and Optical Properties of a-Si:H/nc-Si:H Thin Films Grown from Ar-H2-SiH4 Mixture by Plasma-Enhanced Chemical Vapor Deposition” Mater. Sci. and Eng., Vol.104, pp.80-87 (2003)
    29. Li, S. B., Wu, Z. M., Li, W., Jiang, Y. D., and Liao, N. M., “Influence of Substrate Temperature on the Microstructure and Optical Properties of Hydrogenated Silicon Thin Film Prepared with Pure Silane” Phys. B, Vol.403, pp.2282-2287 (2008)
    30. Zhang, Y. Y., Du, P. Y., Zhang, R., Han, G. R., and Weng, W. J., “Structure and Properties of Hydrogenated Amorphous Silicon Carbide Thin Films Deposited by PECVD” J. Non-Cryst. Solids., Vol.354, pp.1435-1439 (2008)
    31. Höller, H.J., Semiconductor Solar Cells, Artech House, London, pp.139 (1993)
    32. Gaspari, F., Oleary, S. K., Zukotynski, S. and Perz, J. M., “The Dependence of the Dark Conductivity of Hydrogenated Amorphous-Silicon Films on the Hydride Content” J. Non-Cryst. Solids., Vol.155, pp.149-154 (1993)
    33. Brodsky, M.H., M. Cardona, and J.J. Cuomo, “Infrared and Raman-Sprctra of Silicon-Hydrogen Bonds in Amorphous Silicon Prepared by Glow-Discharge and Sputtering” Phys. Rev. B., Vol.16, pp.3556-3571 (1977)
    34. Zanzucchi, P.J., C.R. Wronski, and D.E. Carlson, “Optical and Photoconductive Properties of Discharge-Produced Amorphous Silicon” J. Appl. Phys., Vol.48, pp.5227-5236 (1977)
    35. Lucovsky, G., R.J. Nemanich, and J.C. Knights, “Structural Interpretation of the Vibrational-Spectra of a-Si-H Alloys” Phys. Rev. B., Vol.19, pp.2064-2073 (1979)
    36. Cardona, M., “Vibrational-Spectra of Hydrogen in Silicon and Germanium” Phys Status Solidi B, Vol.118, pp.463-481 (1983)
    37. Lucovsky, G. and W.B. Pollard, “Vibrational Properties of Amorphous-Alloys” Top Appl Phys., Vol.56, pp.301-355 (1984)
    38. Stannowski, B. and R.E.I. Schropp, “Hot-Wire Amorphous Silicon Thin-Film Transistors on Glass” Thin Solid Films, Vol.383, pp.125-128 (2001)
    39. Chaudhuri, P. and U.K. Das, “Control of Microstructure and Optpelectronic Properties of Si-H Films by Argon Dilution in Plasma-Enhanced Chemical-Vapor-Deposition from Silane” Jpn. J. Appl. Phys., Vol.34, pp.3467-3473 (1995)
    40. Mullerova, J., Sutta, P., van Elzakker, G., Zeman, M., and Mikula, M., “Microstructure of Hydrogenated Silicon Thin Films Prepared from Silane Diluted with Hydrogen” Appl. Surf. Sci., Vol.254, pp.3690-3695 (2008)
    41. Gogoi, P., P.N. Dixit, and P. Agarwal, “Amorphous Silicon Films with High Deposition Rate Prepared Using Argon and Hydrogen Diluted Silane for Stable Solar Cells” Sol. Energy Mater. & Sol. Cells., Vol.91, pp.1253-1257 (2007)
    42. Kolodziej, A., “Staebler-Wronski Effect in Amorphous Silicon and Its Alloys” Opto-Electron. Rev., Vol.12, pp.21-32 (2004)
    43. Maeda, K. and I. Umezu, “Defect Formation Mechanism During Plasma Enhanced Chemical Vapor Deposition of Undoped a-Si:H” J. Non-Cryst. Solids., Vol.227, pp.43-47 (1998)
    44. Jackson, W.B., M. Stutzmann, and C.C. Tsai, “Effects of Dopant and Impurity Incorporation on Metastable Light-Induced Defect Formation” Solar Cells, Vol.21, pp.431-438 (1987)
    45. Lee, C.H., J.W. Jeon, and K.S. Lim, “Ultrathin Boron-Doped Microcrystalline Silicon as a Novel Constant Band Gap Buffer Inserted at the p-a-SiC:H/i-a-Si:H Interface of Amorphous Silicon Solar Cells” J. Appl. Phys., Vol.87, pp.8778-8785 (2000)
    46. Myong, S.Y., S.S. Kim, and K.S. Lim, “In situ Ultraviolet Treatment in an Ar Ambient upon P-type Hydrogenated Amorphous Silicon-Carbide Windows of Hydrogenated Amorphous Silicon Based Solar Cells” Appl. Phys. Lett., Vol.84, pp. 5416-5418 (2004)
    47. Ogawa, S., Okabe, M., Itoh, T., Yoshida, N., and Nonomura, S., “Amorphous Si1-xCx:H Films Prepared by Hot-Wire CVD Using SiH3CH3 and SiH4 Mixture Gas and Its Application to Window Layer for Silicon Thin Film Solar Cells” Thin Solid Films, Vol.516, pp.758-760 (2008)
    48. Karabay, I., “The Influence of Carbon and Boron Atoms on the Optical and Electrical Properties of Thin Film a-Si:H” Mod. Phys. Lett. B., Vol.20, pp.1591-1596 (2006)
    49. Carabe, J. and J.J. Gandia, “Thin-Film-Silicon Solar Cells” Opto-Electron. Rev., Vol.12, pp.1-6 (2004)
    50. Hishikawa, Y., Tsuge, S., Nakamura, N., Tsuda, S., Nakano, S., and Kuwano, Y., “Device-Quality Wide-Gap Hydrogenated Amorphous-Silicon Films Deposited by Plasma Chemical Vapor-Deposition at Low Substrate Temperatures” J. Appl. Phys., Vol.69, pp.508-510 (1991)
    51. Asano, Y., D.S. Baer, and R.K. Hanson, “Substrate-Temperature Dependence of SiH Concentration in Silane Plasmas for Amorphous-Silicon Film Deposition” J. Non-Cryst. Solids., Vol.94, pp.5-10 (1987)
    52. Myburg, G. and R. Swanepoel, “The Influence of Substrate-Temperature on the Deposition Rate and Optical-Properties of a-Si Thin-Films Prepared by Rf-Glow Discharge” J. Non-Cryst. Solids., Vol.89, pp.13-23 (1987)
    53. Greenlief, C.M., S.M. Gates, and P.A. Holbert, “Absolute Coverage and Decomposition Kinetics of Mono-, Di-, and Tri-Hydride Phases on Si(111)-(7×7)” Chem. Phys. Lett., Vol.159, pp.202-206 (1989)
    54. Wallace, R. M., Cheng, C. C., Taylor, P. A., Choyke, W. J., and Yates, J. T., “Ni Impurity Effects on Hydrogen Surface Chemistry and Etching of Si(111)” Appl. Surf. Sci., Vol.45, pp.201-206 (1990)
    55. Matsuda, A. and K. Tanaka, “Investigation of the Growth-Kinetics of Glow-Discharge Hydrogenated Amorphous-Silicon Using a Radical Separation Technique” J. Appl. Phys., Vol.60, pp.2351-2356 (1986)
    56. Tsai, C. C., Knights, J. C., Chang, G., and Wacker, B., “Film Formation Mechanisms in the Plasma Deposition of Hydrogenated Amorphous-Silicon” J. Appl. Phys., Vol.59, pp.2998-3001 (1986)
    57. Hamers, E. A. G., van Sark, Wgjhm, Bezemer, J., Meiling, H., and van der Weg, W. F., “Structural Properties of a-Si:H Related to Ion Energy Distributions in VHF Silane Deposition Plasmas” J. Non-Cryst. Solids., Vol.226, pp.205-216 (1998)
    58. Sumiya, S., Mizutani, Y., Yoshida, R., Hori, M., Goto, T., Ito, M., Tsukada, T., and Samukawa, S., “Plasma Diagnostics and Low-Temperature Deposition of Microcrystalline Silicon Films in Ultrahigh-Frequency Silane Plasma” J. Appl. Phys., Vol.88, pp.576-581 (2000)
    59. Isomura, M., M. Kondo, and A. Matsuda, “Device-Grade Amorphous Silicon Prepared by High-Pressure Plasma” Jpn. J. Appl. Phys., Vol.41, pp.1947-1951 (2002)
    60. Kondo, M. and A. Matsuda, “An Approach to Device Grade Amorphous and Microcrystalline Silicon Thin Films Fabricated at Higher Deposition Rates” Curr. Opin. Solid State & Mat. Sci., Vol.6, pp.445-453 (2002)
    61. Dalal, V.L., J. Graves, and J. Leib, “Influence of pressure and ion bombardment on the growth and properties of nanocrystalline silicon materials” Appl. Phys. Lett., Vol.85, pp.1413-1414 (2004)
    62. Ross, R.C. and J. Jaklik, “Plasma Polymerization and Deposition of Amorphous Hydrogenated Silicon from Rf and Dc Silane Plasmas” J. Appl. Phys., Vol.55, pp.3785-3794 (1984)
    63. Doyle, J.R., D.A. Doughty, and A. Gallagher, “Silane Dissociation Products in Deposition Discharges” J. Appl. Phys., Vol.68, pp.4375-4384 (1990)
    64. Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., “Glow-Discharge a-Si1-xCx-H Films Studied by Electron-Spin-Resonance and IR Measurements” Jpn. J. Appl. Phys., Vol.21, pp.119-121 (1982)
    65. Yueqin, X., Bill Nemeth, Falah Hasoon, Lusheng, H., Anna Duda, and Qi, W., “P-layer Optimization in High Performance a-Si:H Solar Cell” MRS Spring Meeting 2010, (2010)

    QR CODE