簡易檢索 / 詳目顯示

研究生: 周冠宏
Kuan-Hung Chou
論文名稱: 以甲基三氯矽烷為前驅物化學氣相沉積β相碳化矽薄膜的成長機構之研究
Film growth mechanism of chemical vapor deposition of β-phase SiC using methyltrichlorosilane as precursor
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 江志強
劉智生
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 碳化矽熱壁式化學氣相沉積法甲基三氯矽烷反應動力學
外文關鍵詞: SiC, hot wall CVD, methyltrichlorosilane, reaction kinetics
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 碳化矽結構及塊材製備方法 5 2.1.1 碳化矽的結構及特性 5 2.1.2 昇華法(sublimation method)製備碳化矽 9 2.1.3 高溫化學氣相沉積法製備單晶碳化矽 10 2.2 化學氣相沉積法製備碳化矽 11 2.2.1 使用含氯矽烷的化學氣相沉積 13 2.2.2 以氯矽烷(SiHxCly)做為前驅物的SiC-CVD 13 2.2.3 以含碳的氯矽烷(SiHxCyClz)為前驅物的SiC-CVD 13 2.3 甲基三氯矽烷化學氣相沉積系統之反應動力學 14 2.3.1 本實驗室的初始實驗數據 19 2.3.2 以Macrocavity反應器分析前驅物的氣相及表面反應速率常數 22 2.3.3 氫氣在MTS化學氣相沉積系統(CVD)中的重要性 27 第三章 實驗方法與步驟 29 3.1 實驗材料 29 3.2 實驗設備 31 3.2.1 熱壁式管狀(tubular)CVD反應器CVD反應器 31 3.3 實驗步驟 35 3.3.1 矽基材的清洗 35 3.3.2 Macrocavity反應器製作用來作為MTSMTS-CVD長膜動力學分析 37 3.3.3 不同氫氣比例及不同壓力的碳化矽成長 37 3.4 分析儀器 39 3.4.1 多角度全光譜橢圓偏振技術(Variable Angle Spectroscopic Ellipsometry, VASE) 39 3.4.2 場發射掃描式電子顯微術(Field Emission Scanning Electron Microscope, FESEM) 40 3.4.3 X射線光電子能譜學(X-ray Photoelectron Spectroscopy, XPS) 41 第四章 結果與討論 43 4.1 在圓管反應器內MTS-CVD沉積碳化矽的行為:以反應溫度及反應管徑為變數時 43 4.2 以Macrocavity反應器內MTS-CVD沉積的碳化矽分析MTS的表面反應行為 49 4.3 在圓管反應器內MTS-CVD沉積碳化矽的行為 57 4.3.1 反應器管徑大小為變數時 57 4.3.2 氫氣濃度為變數時 62 4.3.3 反應器總壓為變數時 74 4.4 MTS-CVD反應動力學分析 78 第五章 結論 81 第六章 參考文獻 82

    1. T. Kimoto, Japanese Journal of Applied Physics 54 (4), 040103 (2015).
    2. S. H. Mousavipour, V. Saheb and S. Ramezani, The Journal of Physical Chemistry A 108 (11), 1946-1952 (2004).
    3. M. D. Allendorf, T. H. Osterheld and C. F. Melius, MRS Online Proceedings Library (OPL) 334 (1993).
    4. L.-S. Hong, Y. Shimogaki and H. Komjyama, Thin Solid Films 365 (2), 176-188 (2000).
    5. G. Harris, The Institution of Electrical Engineers, London 5 (1995).
    6. R. F. Davis, G. Kelner, M. Shur, J. W. Palmour and J. A. Edmond, Proceedings of the IEEE 79 (5), 677-701 (1991).
    7. P. Ivanov and V. Chelnokov, Semiconductor science and technology 7 (7), 863 (1992).
    8. b. H. Morkoc, S. Strite, G. Gao, M. Lin, B. Sverdlov and M. Burns, Journal of Applied physics 76 (3), 1363-1398 (1994).
    9. W. F. Knippenberg, Philips Research Report 18, 161-274 (1963).
    10. W. S. Y. W. S. Yoo and H. M. H. Matsunami, Japanese journal of applied physics 30 (3R), 545 (1991).
    11. A. Itoh, H. Akita, T. Kimoto and H. Matsunami, Applied physics letters 65 (11), 1400-1402 (1994).
    12. M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa and S. Yoshida, Journal of applied physics 61 (2), 599-603 (1987).
    13. M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. (John Wiley & Sons, 2001).
    14. J. Wu, Z. Xu, L. Liu, A. Hartmaier, M. Rommel, K. Nordlund, T. Wang, R. Janisch and J. Zhao, Journal of Materials Chemistry C 9 (7), 2258-2275 (2021).
    15. T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications. (John Wiley & Sons, 2014).
    16. A. Kyuregyan and S. Yurkov, Soviet Physics--Semiconductors(English Translation) 23 (10), 1126-1131 (1989).
    17. M. H. Hong, A. Samant and P. Pirouz, Philosophical Magazine A 80 (4), 919-935 (2000).
    18. S. Jayakumari and M. Tangstad, Metallurgical and Materials Transactions B 51 (6), 2673-2688 (2020).
    19. A. Ellison, B. Magnusson, B. Sundqvist, G. Pozina, P. Bergman, E. Janzén and A. Vehanen, presented at the Materials Science Forum, 2004 (unpublished).
    20. J. A. Cooper and A. Agarwal, Proceedings of the IEEE 90 (6), 956-968 (2002).
    21. H. Pedersen, S. Leone, O. Kordina, A. Henry, S.-i. Nishizawa, Y. Koshka and E. Janzén, Chemical reviews 112 (4), 2434-2453 (2012).
    22. G. H. Aylward and T. J. Findlay, Datensammlung Chemie in SI-Einheiten. (John Wiley & Sons, 2014).
    23. F. La Via, G. Izzo, M. Mauceri, G. Pistone, G. Condorelli, L. Perdicaro, G. Abbondanza, L. Calcagno, G. Foti and D. Crippa, Journal of Crystal Growth 311 (1), 107-113 (2008).
    24. D. E. Cagliostro and S. R. Riccitiello, Journal of the American Ceramic Society 76 (1), 49-53 (1993).
    25. I. Regiani and M. F. de Souza, Surface and Coatings Technology 162 (2-3), 131-134 (2003).
    26. H. Pedersen, S. Leone, A. Henry, F. Beyer, V. Darakchieva and E. Janzén, Journal of crystal growth 307 (2), 334-340 (2007).
    27. T. Kunstmann and S. Vepřek, Applied physics letters 67 (21), 3126-3128 (1995).
    28. Y. Fukushima, K. Hotozuka and Y. Shimogaki, Journal of Nanoscience and Nanotechnology 11 (9), 7988-7993 (2011).
    29. Y. Funato, N. Sato, Y. Fukushima, H. Sugiura, T. Momose and Y. Shimogaki, ECS Journal of Solid State Science and Technology 6 (7), P399 (2017).
    30. N. Sato, Y. Funato, Y. Fukushima, T. Momose, M. Koshi and Y. Shimogaki, International Journal of Chemical Kinetics 52 (6), 359-367 (2020).
    31. Y. Ge, M. S. Gordon, F. Battaglia and R. O. Fox, The Journal of Physical Chemistry A 114 (6), 2384-2392 (2010).
    32. M. Ganz, N. Dorval, M. Lefebvre, M. Péalat, F. Loumagne and F. Langlais, Journal of the Electrochemical Society 143 (5), 1654 (1996).
    33. K. Shima, Y. Funato, N. Sato, Y. Fukushima, T. Momose and Y. Shimogaki, ACS Applied Materials & Interfaces 12 (45), 51016-51025 (2020).
    34. 李柏陞, 台灣科技大學化學工程研究所碩士班碩士論文, 2021.
    35. M. Janai, Thin Solid Films 91 (3), 211-216 (1982).
    36. L. S. Hong, Y. Shimogaki, Y. Egashira and H. Komiyama, Journal of The Electrochemical Society 139 (12), 3652 (1992).
    37. J.-H. Oh, B.-J. Oh, D.-J. Choi, G.-H. Kim and H.-S. Song, Journal of materials science 36 (7), 1695-1700 (2001).
    38. S. Motojima and M. Hasegawa, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8 (5), 3763-3768 (1990).
    39. L. Wang, Z. Chen, B. Wang, Y. Li, R. Zhang, G. Liu, Z. He, D. Fu, H. Wang and X. Xiong, Ceramics International 44 (14), 17118-17123 (2018).
    40. J. Peng, B. Jolly, D. J. Mitchell, J. A. Haynes and D. Shin, Journal of the American Ceramic Society 104 (7), 3726-3737 (2021).
    41. M. Johnson, 2013.
    42. K. Akhtar, S. A. Khan, S. B. Khan and A. M. Asiri, in Handbook of materials characterization (Springer, 2018), pp. 113-145.
    43. K. Shima, Y. Otaka, N. Sato, Y. Funato, Y. Fukushima, T. Momose and Y. Shimogaki, ACS Applied Materials & Interfaces 13 (44), 53009-53020 (2021).
    44. Y. Fukushima, N. Sato, Y. Funato, H. Sugiura, K. Hotozuka, T. Momose and Y. Shimogaki, ECS Journal of Solid State Science and Technology 2 (11), P492-P497 (2013).
    45. Y. Ge, M. S. Gordon, F. Battaglia and R. O. Fox, The Journal of Physical Chemistry A 111 (8), 1475-1486 (2007).

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2027/08/29 (校外網路)
    全文公開日期 2027/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE