簡易檢索 / 詳目顯示

研究生: 陳世賢
SHIH-HSIEN CHEN
論文名稱: 雙輪倒單擺車於不同環境下之運動控制
Motion Control of Two Wheels Inverted Pendulum Robot in Different Enviroment
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 張以全
I-CHUAN CHANG
陳宏毅
HONG-YI CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 雙輪倒單擺車陀螺儀加速度計三相無刷直流馬達霍爾感測器
外文關鍵詞: Two-Wheel Inverted Pendulum, Hall Sensor, Arduino Nano 3.0
相關次數: 點閱:289下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討雙輪倒單擺車在不同環境下之運動控制,本研究所使用的控制核心為Arduino Nano 3.0,利用加速度計與陀螺儀量測車身的傾斜角度與傾斜角速度,再透過卡爾曼濾波器進行預測,得到較佳的傾斜角資訊。本研究的倒單擺車是使用三相無刷直流輪毂馬達作為動力源,並透過三相馬達本身所具備之霍爾感測器進行迴授,測得倒單擺車的位移量以及速度,並在前方設有把手做為轉向機構,透過電位計達到兩輪差速轉向功能。
    控制器使用不需模型並具有高強健性的模糊滑動模式控制器(Fuzzy Sliding Mode Control)。
    經實驗結果證明,FSMC控制器不僅成功的讓倒單擺車達到隱定的平衡控制,在加入速度控制器後,也成功的讓倒單擺車在不同環境下(如:平地、斜坡、載人、空載)達到所設定之速度指標,而把手轉向控制器亦令倒單擺車在平衡的情況下進行兩輪的差速運動,使車身轉彎,不僅提升車輪之移動性能,也增加倒單擺車的實用性。結論證實FSMC控制器能成功的應用在倒單擺車處於不同環境下之各種運動控制。


    The goal of this thesis is to investigate the motion control performance of two-wheel inverted pendulum (TWIP) vehicle in different environment. The control kernel of this system is Arduino Nano 3.0. Accelerometer and gyroscope are used to measure the tilt angle and angular velocity of the inverted pendulum, respectively. Kalman filter is used to estimate the accurate tilt angle based on sensor fusion process. The brushless DC hub motor (BLDC) was chosen as the wheel driving power which is equipped with hall sensor for measuring the moving distance and speed of inverted pendulum. The handle bar in front of TWIP generates the signal through potentiometer to control TWIP turning.
    The model-free and robust fuzzy sliding mode controller (FSMC) is chosen for controlling this system. The experiment results show that FSMC not only can achieve TWIP stability in balance control but also achieve the velocity command in different environment (ex:flat、incline、no-load、loaded) in velocity control. The steering control algorithm also makes TWIP turning smoothly and keeps TWIP balancing. All those control schemes are integrated into the system control kernel for improving the TWIP motion performance.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 5 1.3 論文架構 5 第2章 系統架構 6 2.1 雙輪倒單擺硬體架構 8 2.1.1 三軸加速度計MMA7361 8 2.1.2 雙軸陀螺儀LPY503AL 12 2.1.3 卡爾曼濾波器(Kalman Filter) 13 2.1.4 無線通訊模組XBee S1 16 2.1.5 三相永磁無刷直流馬達 17 2.1.6 三相永磁無刷直流馬達模型 18 2.2 Arduino Nano 3.0 22 2.2.1 計時計數器與脈寬調變訊號(Timer、PWM) 24 2.2.2 類比數位轉換器(ADC) 25 2.2.3 外部訊號變化中斷(PCINT) 27 2.3 三相永磁無刷馬達架構 28 2.3.1 三相永磁無刷馬達驅動電路 30 2.3.2 橋式驅動電路 33 2.4 主控制板電路 37 第3章 系統分析 40 3.1 模糊邏輯控制 40 3.1.1 模糊集合與隸屬函數 41 3.1.2 基本模糊控制器架構 41 3.2 滑動模式控制 45 3.2.1 滑動模式控制原理 45 3.2.2 滑動模式理論基礎 46 3.3 模糊滑動模式控制 49 第4章 實驗結果 52 4.1 平衡控制實驗 53 4.1.1 實驗說明 53 4.1.2 實驗參數 54 4.1.3 FSMC平衡控制器實驗結果 55 4.1.4 實驗結果與討論 57 4.2 定速控制實驗 61 4.2.1 實驗說明 61 4.2.2 實驗參數 61 4.2.3 平地空載速度控制(V=0.2m/s)實驗結果 63 4.2.4 平地載人速度控制(V=0.2m/s) 66 4.2.5 斜坡空載速度控制(V=0.2m/s) 70 4.2.6 斜坡載人速度控制(V=0.2m/s) 73 4.2.7 實驗結果與討論 77 4.3 把手轉向實驗 80 4.3.1 實驗說明 80 4.3.2 FSMC手把轉向控制實驗結果 81 4.3.3 實驗結果與討論 85 第5章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 86 參考文獻 87

    【1】 S. Mori, H. Nishihara, and K. Furuta, “Control of unstable mechanical system control of pendulum,” Int. J. Control, Vol. 23. No. 5, pp. 673-692, 1976.
    【2】 J. C. Lo, and Y. H. Kuo, “Decoupled Fuzzy Sliding Mode Control,” IEEE Trans. on Fuzzy Systems, Vol. 6, No. 3, pp. 426-435, 1998.
    【3】 S. J. Huang, and C. L. Huang, “Control of an Inverted Pendulum Using Grey Prediction Model,” IEEE Transactions on Industry Applications, Vol. 36, No. 2, pp. 452-458, 2000.
    【4】 K. Pathak, J. Franch, S.K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Transactions on Robotics, Vol. 21, 2005.
    【5】 C. H. Chiu, and Y. F. Peng, “Design and Implementation of the self-dynamic Controller for Two-Wheel Transporter,” IEEE International Conference on Fuzzy Systems, 2006.
    【6】 T. J. Ren, T. C. Chen, and C. J. Chen, “Motion control for a two-wheeled vehicle using a self-tuning PID controller,” Control Engineering Practice, pp. 365-375, 2007.
    【7】 H. J. Lee, and Seul Jung, “Control of a mobile inverted pendulum robot system,” ICCAS International Conference on Control, Automation and Systems, 2008.
    【8】 A. M. Almeshal, K. M. Goher, and M. O. Tokhi, “A new configuration of a two-wheeled double inverted pendulum-like robotic vehicle with movable payload on an inclined plane, ” First International Conference on Innovative Engineering Systems (ICIES),Dec 2012.
    【9】 Masashi Sugimoto, Kentarou Kurashige, “The proposal for deciding effective action using prediction of internal robot state based on internal state and action,” International Symposium on Micro-NanoMechatronics and Human Science (MHS), Nov 2013.
    【10】 Fuquan Dai, Jize Li, Jinmin Peng, “Design and control of multi-DOF two wheeled inverted pendulum robot,” 11th World Congress on Intelligent Control and Automation (WCICA), July 2014
    【11】 Fuquan Dai, Xueshan Gao, Shigong Jiangr, “A multi-DOF two wheeled inverted pendulum robot climbing on a slope,” IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec 2014.
    【12】 Abhinav Sinha, Pikesh Prasoon, Prashant Kumar Bharadwaj, ”Nonlinear autonomous control of a two-wheeled inverted pendulum mobile robot based on sliding mode,” International Conference on Computational Intelligence and Networks (CINE), Jan 2015.
    【13】 Segway of West Texas, “i2 Models,” Retrieved July 20, 2017, from http://www.segwaytexaswest.com/i2%20Models.htm
    【14】 Segway’s P.U.M.A., Retrieved July 7, 2017,from http://www.segway.com/puma/
    【15】 Segway Ninebot mini, Retrieved July 7, 2017,from http://www.mi.com/scooter/
    【16】 QIEWA X1+智能平衡車, Retrieved July 7, 2017,from https://www.qiewa-tec.com/products/x1-1
    【17】 SparkFun Electronics, “Triple Axis Accelerometer Breakout - MMA7361,” Retrieved July 7, 2017, from https://www.sparkfun.com/products/9652
    【18】 SparkFun Electronics, “Gyro Breakout Board - LPY503AL Dual 30°/s,” Retrieved July 20, 2017, from https://www.sparkfun.com/products/11341
    【19】 G. Bishop ,and G. Welch, “An Introduction to the Kalman Filter,” ACM SIGGRAPH Conference, Los Angeles, USA, pp. 1-47, 2001.
    【20】 SparkFun Electronics, “XBee 1mW Wire Antenna - Series 1 (802.15.4),” Retrieved July 7, 2017, from https://www.sparkfun.com/products/8665
    【21】 Nanjin Nadia Mechanical and Electrical Technology , “Electric Bicycle Wheel Hub Motor,” Retrieved July 7, 2017,from http://www.njndjd.com/productList.asp?pId=1432
    【22】 普特企業有限公司-飆機器人, “Arduino Nano-328微處理器,” Retrieved July 7, 2017, from http://www.playrobot.com/cart/mycart.php?cheak=y
    【23】 The Custom Geek , Retrieved July 7, 2017, from http://thecustomgeek.com/wp-content/uploads/2012/09/328sm.jpeg
    【24】 Atmel Corporation, “ATMEGA328P datasheet,” Figure 15-1, October 2009.
    【25】 張統凱, “四輪獨力驅動電動車之電子剎車與速度控制,” 碩士論文, 國立台灣技技大學機械工程系, 2013.
    【26】 S. Sedra and C. S. Kenneth, “Microelectronic Circuits,” Oxford, 2002.
    【27】 J. J. E. Slotine, and W. Li, “Applied Nonlinear Control,” Prentice-Hall, 1991.
    【28】 J. J. Gonzalez, and G. R. Widmann, “Force commanded impedance control scheme for robots with hard nonlinearities,” IEEE Transactions on Control System Technology, Vol. 3, No. 4, pp. 398-408, 1995.
    【29】 R. J. Anderson, and M. W. Spong, “Jybrid impedance control of robotic manipulators,” IEEE Transactions on Robotics and Automation, Vol. 4, No. 5, pp. 549-556, 1988.
    【30】 G. Ferretti, Magnani, and P. Rocco, “Toward the Implementation of Hybrid Position﹙Force Control in Industrial Robots,” IEEE Transactions on Robotics and Automation, Vol. 13, No. 6, December 1997.
    【31】 G. Ferretti, G. A. Magnani, and P. Rocco, “Impedance control for elastic joints industrial manipulators,” IEEE Transactions on Robotics and Automation, Vol. 20, No. 3, pp.488-498, 2004.
    【32】 游喬焜, “以系統晶片結合力量感測器發展具有力量控制功能之機械手臂,” 碩士論文,國立台灣科技大學機械工程研究所,2009.
    【33】 R. R. Yager, and D. P. Filev, “Essentials of fuzzy modeling and control,” John Wiley and Sons, New York, 1994.
    【34】 S. Y. Yi, and M. J. Chung, “Robustness of Fuzzy Logic Control for an Uncertain Dynamic System,” IEEE Transactions on Fuzzy Systems, Vol. 6, No. 2, pp. 216-225, May 1998.
    【35】 李欣翰, “雙輪倒單擺車之智慧型運動控制,” 碩士論文, 國立台灣技技大學機械工程系, 2015.
    【36】 洪祥富, “雙輪倒單擺設計與穩定控制,” 碩士論文, 國立台灣技技大學機械工程系, 2013.

    QR CODE