簡易檢索 / 詳目顯示

研究生: 沈鐇
Fan - Shen
論文名稱: 使用手機的加速度計和陀螺儀之動作辨識研究
A Study of Activity Recognition Using Accelerometer and Gyroscopes from Smartphone
指導教授: 吳怡樂
Yi-Leh Wu
口試委員: 何瑁鎧
Maw-Kae Hor
陳建中
Jiann-Jone Chen
唐政元
Cheng-Yuan Tang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 50
中文關鍵詞: 動作辨識分類器加速度計陀螺儀智慧型手機
外文關鍵詞: Activity Recognition, Classifier, Accelerometer, Gyroscope, Smartphone
相關次數: 點閱:216下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近動作識別已成為一個熱門的研究主題,並獲得研究領域的關注,因為消費產品提供許多感測器,如GPS感測器,視覺感測器,聲音感測器,光傳感測器,溫度感測器,方向感測器和加速度感測器。這些感測器建立新的資料探勘應用。本文闡述一個基於智慧型手機的系統,使用的加速度計和陀螺儀感測器去執行動作辨別。我們使用Human Activity Recognition Using Smartphones的資料集以實作評估,資料集中有30名志願者進行日常活動,如散步,躺,樓上,坐著,站著等。實驗結果發現陀螺儀提高在動態性活動的識別,如散步和上樓,另外我們使用不同的分類器,其中動作識別的精準度高於以往的實驗的結果。


    Recently, Activity Recognition (AR) has become a popular research topic and gained attention in the study field because of the increasing availability of sensors in consumer products, such as GPS sensors, vision sensors, audio sensors, light sensors, temperature sensors, direction sensors, and acceleration sensors. The availability of a variety of sensors creates many new opportunities for data mining applications. This paper proposes a mobile phone-based system that employs the accelerometer and the gyroscope signals for AR. To evaluate the proposed system, we employ a data set from the Human Activity Recognition Using Smartphones Data Set where 30 volunteers performed daily activities such as walking, lying, upstairs, sitting, and standing. The result shows that the features extracted from the gyroscope enhance the classification accuracy in term of dynamic activities recognition such as walking and upstairs. A comparison study shows that the recognition accuracies of the proposed framework using various classification algorithms are higher than previous works.

    論文摘要 I Abstract II Contents III List of Figures IV List of Tables V Chapter 1. Introduction 1 1.1 Research Motivation and Purpose 1 1.2 Accelerometer 2 1.3 Gyroscopes 4 1.4 Thesis Structure 5 Chapter 2. Related Work 6 Chapter 3. The Activity Recognition Task 8 3.1 Data Collection 8 3.2 Signals Segmentation 10 3.3 Features Selection 11 3.4 Recognition 14 Chapter 4. Classifier 20 4.1 Naive Bayes 20 4.2 Support Vector Machines 22 4.3 J48 Decision Tree 25 4.4 Logistic Regression 26 4.5 Multilevel Perceptron 28 Chapter 5. Experiments 30 5.1 Description of Experiments 30 5.2 Results of Activity Classification 30 5.3 Comparison 35 Chapter 6. Conclusion and Future Work 37 References 38 Appendix A–The Confusion Matrices of Test data for Naive Bayes 40 Appendix B–The Confusion Matrices of Test data for SVM 41 Appendix C - The Confusion Matrices of Test data for J48 42 Appendix D - The Confusion Matrices of Test data for Logistic Regression 43 Appendix E - The Confusion Matrices of Test data for Multilayer Perceptron 44

    [1] J. Ekholm and S. Fabre, “Forecast: Mobile Data Traffic and Revenue, Worldwide, 2010-2015,” Gartner, Inc., July 2011.
    [2] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” Pervasive Computing, 2004.
    [3] K. Aminian, P. Robert, E. Jequier, and Y. Schutz, “Estimation of speed and incline of walking using neural network,” IEEE Transactions on Instrumentation and Measurement, 44(3):743–746, Jun 1995.
    [4] R. Herren, A. Sparti, K. Aminian, and Y. Schutz, “The prediction of speed and incline in outdoor running in humans using accelerometry,” Medicine & Science in Sports & Exercise, 31(7):1053–9, 1999.
    [5] R. Caruana and A. Niculescu-Mizil, "An Empirical Comparison of Supervised Learning Algorithms," In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006.
    [6] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone accelerometers,” ACM SIGKDD Explorations Newsletter,”12(2):74-82, 2011.
    [7] I. H. Witten and E. Frank, “Data Mining: Practical Machine Learning Tools and Techniques,” 2nd ed. Morgan Kaufmann, June 2005.
    [8] J. Han and M. Kamber, “Data Mining: Concepts and Techniques,”2nd ed. Morgan Kaufmann, Nov., 2005.
    [9] J. R. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann Publishers Inc., 1993.
    [10] S.-W. Lee and K. Mase, “Activity and location recognition using wearable sensors,” Pervasive Computing, 1(3):24-32, 2002.
    [11] J. Mantyjarvi, J. Himberg, and T. Seppanen, “Recognizing human motion with multiple acceleration sensors,” IEEE International Conference on Systems, Man, and Cybernetics, 2001.
    [12] N. Kern, B. Schiele, and A. Schmidt, “Multi-sensor activity context detection for wearable computing,” Ambient Intelligence, 2003.
    [13] F. Foerster, M. Smeja, and J. Fahrenberg, “Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring,” Computers in Human Behavior, 15(5):571-583, 1999.
    [14] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine,” Ambient Assisted Living and Home Care, 2012.
    [15] L. Bao, “Physical Activity Recognition from Acceleration Data under Semi-Naturalistic Conditions,” Master Thesis, MIT, 2003.
    [16] N.C. Krishnan, D. Colbry, C. Juillard, and S. Panchanathan, “Real time human activity recognition using tri-Axial accelerometers,”Sensors, Signals and Information Processing (SenSIP) Workshop, 2008.
    [17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “The Art of Scientific Computing,” 3rd ed. New York: Cambridge University Press, 2007.
    [18] A. Rodriguez-Molinero, D. Perez-Martinez, A. Sama, P. Sanz, M. Calopa, A. Galvez, C. Perez-Lopez, J. Romagosa, and C. Catala, “Detection of gait parameters, bradykinesia and falls in patients with Parkinson’s disease by using a unique triaxial accelerometer,” 2nd World Parkinson Congress. Glasgow, Scotland. Septembrer 2010.
    [19] S. K. Palei , S. K. Das, “Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines: An approach,” Department of Mining Engineering, Indian Institute of Technology, 2006
    [20] L. Rabiner and B. H. Juang, “Fundamentals of Speech Recognition,” Prentice Hall, 1993.
    [21] U. Maurer, A. Smailagic, D.P. Siewiorek, and M. Deisher, “Activity recognition and monitoring using multiple sensors on different body positions,” International Workshop on Wearable and Implantable Body Sensor Networks, 2006.
    [22] Y. Cho, Y. Nam,Y-J. Choi, and W-D. Cho, “Smart-Buckle: human activity recognition using a 3-axis accelerometer and a wearable camera,” In HealthNet, 2008.
    [23] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca, L. Legrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, P. Klasnja, K. Koscher, J.A. Landay, J. Lester, D. Wyatt, and D. Haehnel, “The Mobile Sensing Platform: An Embedded Activity Recognition System,” Pervasive Computing, 7(2):32-41, 2008.
    [24] D. Anguita, A. Ghio, S. Pischiutta, and S. Ridella, “A hardware-friendly support vector machine for embedded automotive applications,” International Joint Conference on Neural Networks(IJCNN), 2007.
    [25] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human physical activity from on-body accelerometers,” Sensors, 10(2):1154-1175, 2010
    [26] H-Y. Ho and J-C. Juang, “Pedestrian Motion Recognition Based on Acceleration and Magnetic Field Measurements,” National Cheng Kung University, 2008.

    QR CODE