簡易檢索 / 詳目顯示

研究生: 謝博鈞
Bo-Jiun Shie
論文名稱: 車道維持控制器與駕駛人衝突協調之探討
Investigations of coordinating the conflict between the driver and a lane keeping assist controller
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 高維文
Wei-Wen Kao
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 112
中文關鍵詞: 駕駛行為強健控制適應性控制參數鑑定安全系統
外文關鍵詞: driver behavior, robust control, adaptive control
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對駕駛與輔助系統在車輛側向控制中因控制目標認知不同所導致的交互修正行為(衝突現象)進行探討與設計改善。首先針對控制器效能惡化所引起的衝突問題設計Robust MRAC轉向輔助控制器,其中包含以輸出誤差決定的補償輸入,藉此補償模型不確定性影響並增進系統穩健度。再針對駕駛與控制器欲追蹤路徑不同所引起之衝突進行初步簡易的控制權重調節器設計。最後藉由進行駕駛人模擬駕駛實驗來驗證控制器與調節器是否達到預期效果。根據模擬與實驗結果顯示,強健控制器在處理模型不確定性所造成的駕駛轉向性能降低問題上獲得成效,而與其他適應性輔助系統相較下也確實具有較佳的穩健度。另外在調節器初步設計部分,在較單純的駕駛情況下,當駕駛改變欲追蹤目標,調節器可藉由假設已知的外部系統所提供之駕駛狀態資訊,以調整駕駛與控制器間的控制權重來避免衝突發生,使車輛維持穩定表現。


    This thesis is investigation of coordinating the conflict between the driver and a lane keeping assist controller. A robust model reference adaptive control that can compensate the model uncertainty for system is applied to the design of vehicle steering assist. The controller includes a compensate input to counteract the effect of the model uncertainty, and can enhance the robustness to prevent the conflict. Then design a control weighting shifter to prevent the conflict when the driver and the controller’s desired path were different. Preliminary simulation and experiments study indicates that these designs successfully prevent the conflict.

    摘要Ⅰ 目錄Ⅱ 圖表目錄Ⅳ 第一章 緒論1 1.1 研究背景與動機1 1.2 文獻探討4 1.2.1駕駛模型及模型不確定性的相關文獻4 1.2.2適應性控制應用於車輛安全系統的相關文獻7 1.2.3 文獻結果討論8 1.3 工作項目9 1.4 預期貢獻9 第二章 駕駛與車輛動力學模型10 2.1 車輛動力學的模型建立10 2.2 駕駛橫向控制模型15 2.2.1模擬結果—搖擺角依賴度τ對路徑追蹤效率之影響20 第三章 衝突探討與強健適應性轉向輔助控制器、權重調節器設計24 3.1 衝突現象的探討與模擬24 3.1.1描述衝突行為之駕駛轉向輔助安全系統建立24 3.1.2衝突發生原因探討26 3.2 強健適應性控制器設計30 3.3 駕駛模型參數的估測37 3.4 控制權重調節器設計38 第四章 模擬結果與討論43 4.1 線性駕駛模型的控制器模擬結果43 4.2 STI駕駛模型的控制器模擬結果49 4.3 MPC駕駛模型的控制器模擬結果54 4.4 Robust MRAC與VSMRAC控制器之穩健度比較59 4.5 控制權重調節器的模擬結果67 第五章 實驗規劃與結果討論79 5.1 線上駕駛模擬器的硬體架構79 5.2 實驗規劃81 5.3 實驗結果概論86 5.4 低疲勞駕駛實驗結果86 5.5 中疲勞駕駛實驗結果89 5.6 高疲勞駕駛實驗結果92 第六章 結論與未來方向96 6.1 總結96 6.2 未來工作與展望97 參考文獻98 附錄A 模擬及實驗參數設定102

    [1]中華民國交通部網頁 Http://www.npa.gov.tw/NPAGip/wSite/public/Attachment/f1146476893559.pdf
    [2]Peng, H. and Ulsoy, A. G., “Vehicle control systems,” Department of Mechanical Engineering University of Michigan, Ann Arbor, MI48109-2125, 1997.
    [3]Reid, L. D., “A survey of recent driver steering behavior model suited to accident studies,” Accident Analysis and Prevention, 1983, 15, pp. 23-40.
    [4]Hess, R. A. and Modjtahedzadeh, A., “A control theoretic model of driver steering behavior,” IEEE Control Systems Magazine, 1990, p 3-8
    [5]MacAdam, C. C., “Understanding and modeling the human driver,” Vehicle System Dynamics, v 40, n 1-3, 2003 , pp. 101-134
    [6]Von Garrel, U., Otto, H. J. and Onken, R., “Adaptive modeling of the skill- and rule-based driver behavior,” VDI Berichte, n 1613, 2001, p 239-267
    [7]Cheng, B. and Fujioka, T., “Hierarchical driver model,” IEEE Intelligent Transportation Systems, Proceedings, 1997, p960-965
    [8]Kiencke, U., Majjad, R. and Kramer, S., “Modeling and performance analysis of a hybrid driver model,” Control Engineering Practice, v7, n8, 1999, p985-991
    [9]Wewerinke, P. H., “Model analysis of adaptive car driving behavior,” IEEE International Conference on Systems, Man and Cybernetics, v4, 1996, p2558-2563
    [10]Yasuharu, K. and Doya, K., “Multiple state estimation reinforcement learning for driving model - driver model of automobile,” IEEE International Conference on Systems, Man, and Cybernetics, 1999, pp.504-509
    [11]Preusse, C., “A driver model for online control of virtual cars,” IEEE Conference on Control Applications - Proceedings, 2001, p1174-1178
    [12]Apel, A. and Mitschke, M., “Adjusting vehicle characteristics by means of driver models,” International Journal of Vehicle Design, v18, n6, 1997, p583-596
    [13]Plochl, M. and Lugner, P., “3-Level driver model and its application to driving simulations,” Vehicle System Dynamics, v33, n Suppl, 2000, p 71-82
    [14]Kageyama, I. and Pacejka, H. B., “On a new driver model with fuzzy control,” Vehicle System Dynamics, v20, n Suppl, 1991, p 314-324
    [15]Hogema, J. H., “Modeling motorway driving behavior,” Transportation Research Record, n 1689, 1999, p 25-32
    [16]Modjtahedzadeh, A. and Hess, R. A., “Model of driver steering control behavior for use in assessing vehicle handling qualities,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, v115, n3, Sep, 1993, p456-464
    [17]Sharp, R. S., Casanova, D. and Symonds, P., “Mathematical model for driver steering control, with design, tuning and performance results,” Vehicle System Dynamics, v33, n5, May, 2000, p289-326
    [18]Hess, R. A. and Modjtahedzadeh, A., “Preview control model of driver steering behavior,” IEEE International Conference on Systems, Man and Cybernetics, v2, 1989, p504-509
    [19]Chen, L. K. and Ulsoy, A. G., “Identification of a driver steering model, and model uncertainty, from driving simulator data,” ASME Journal of Dynamic Systems and Control Division - 2001, 2002, p589-596
    [20]Ungoren, A. Y. and Peng, H., “An adaptive lateral preview driver model,” Vehicle System Dynamics, v43, n4, April, 2005, p245-259
    [21]MacAdam, C. C., “An optimal preview control for linear systems,” Transactions of ASME, 1980, p188-190.
    [22]Liu, Z., “Characterisation of optimal human driver model and stability of a tractor-semitrailer vehicle system with time delay,” Mechanical Systems and Signal Processing, v 21, n 5, July, 2007, p 2080-2098
    [23]Qu, Q., Liu, Y. and Zhang, J., “Adaptive model following control of four-wheel steering vehicle,” Qiche Gongcheng/Automotive Engineering, v22, n2, 2000, p 73-76
    [24]Ro, P. I. and Kim, H., “Four wheel steering system for vehicle handling improvement: a robust model reverence control using the sliding mode,” Proceeding of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, v210, n4, 1996, pp. 335-346.
    [25]Chen, L. K. and Ulsoy, A. G., “Design of a vehicle steering assist controller using driver model uncertainty,” International Journal of Vehicle Autonomous Systems, v1, n1, 2002, p111-132
    [26]Fujiwara, Y., Fujihira, T., Ishiwa, O. S. and Adachi, S., “Control design of driver support system using multiple driver models,” Proceedings of the SICE Annual Conference, SICE Annual Conference, 2004, p2773-2778
    [27]胡東暘, “適應性控制於駕駛模型不確定性之研究,” 國立臺灣科技大學機械工程系碩士論文, 2005.
    [28]林良奇, “強健適應性道路維持系統,” 國立臺灣科技大學機械工程系碩士論文, 2007.
    [29]Venhovens, P. and LeBlanc, D., “User manual for CAPC simulation tool v4.2,” Univ. Michigan Transportation Res. Inst., Rep. UMTRI-97-13, Feb 1997.
    [30]Camacho, E. F. and Bordons, C., “Model predictive control in process industry,” Springer-Verlag, 1995.
    [31]Narendra, K. S. and Annaswamy, A. M., “Stable adaptive systems,” Prentice-Hall, New Jersey, 1989.
    [32]Feng, G., “New robust model reference adaptive control algorithm,” IEE Proceedings: Control Theory and Applications, v 141, n 3, May, 1994, p 177-180
    [33]韓曾晉, “適應性控制系統,” 科技圖書股份有限公司, 1992.
    [34]Chen, L. K. and Lin, H. T., “On-line driver steering model estimations,” Proc. 2006 AVEC, Taipei, Taiwan, paper no. AVEC060058, 2006.
    [35]ARTC 財團法人車輛研究測試中心網頁(http://www.artc.org.tw/chinese/upload/technical/高速周回路之應用技術與風險評估規劃.ppt)

    無法下載圖示 全文公開日期 2013/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE