簡易檢索 / 詳目顯示

研究生: 張芸甄
Yun-Chen Chang
論文名稱: 不同階數渾沌系統之特性分析與控制及其FPGA實現
Analysis and Control of Different Orders Chaotic System and its FPGA Implementation
指導教授: 楊振雄
Chen-Hsiung Yang
口試委員: 陳金聖
Chin-Sheng Chen
吳常熙
Chang-Shi Wu
郭永麟
Yong-Lin Kuo
楊振雄
Chen-Hsiung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 82
中文關鍵詞: 分數階渾沌系統適應性控制阿多米安分解法離散化現場可程式化閘陣列
外文關鍵詞: Fractional order, Chaotic system, Adaptive control, Adomian decomposition method (ADM), Discretization, Field Programmable Gate Array (FPGA)
相關次數: 點閱:337下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要對一個自行設計的三維度非線性渾沌系統進行研究,藉由相圖、平衡點、李亞普諾夫指數、頻譜熵值…等技術,探討各階數不同的特性及其運動行為,分析各階數的特色,比較不同階數之間的差異,並利用收斂速度快、應用範圍廣且精確的阿多米安分解法求解分數階方程,探討此分解法之優缺點及特色。
    除此之外,我們討論控制理論,根據適應性控制對系統參數的變化具有適應能力的特性為此系統設計一個控制器,將兩個相似但初始值條件不同的主從系統進行同步,並將系統加上干擾,分析、比較其同步之結果。最後將系統進行離散化,再利用現場可程式化閘陣列實現,驗證此系統以及利用控制器同步後之結果,並在示波器觀察結果是否與模擬之結果相符。


    We design a 3D nonlinear system and analyze the characteristics of its different orders. First, the properties and dynamic behaviors of the system in different orders are discussed by analyzing phase portraits, equilibrium points, Lyapunov exponents, spectral entropy, etc. The fractional order differential equation is solved using the Adomian decomposition method (ADM). We explored the disadvantages, advantages and characteristics of this decomposition method and applied it to this system.
    Besides, we discuss the control theory. According to adaptive control theory and the property of parameter adjustment, we designed an adaptive controller to synchronize two similar systems in different initial conditions. Then analyze the synchronization results of master system, slave system and the systems with disturbances. Lastly, we discretize the system to verify the system and the synchronized system by the Field Programmable Gate Array (FPGA). Display the results on the oscilloscope, observe whether the results matches the simulation results.

    摘要 Abstract 誌謝 List of Figure List of Table Chapter 1 Introduction 1.1 Introduction 1.2 Motivation 1.3 Literature Review 1.4 Thesis Structure Chapter 2 Nonlinear Dynamics Analysis of the 3D Chaotic System 2.1 The Chaotic System and Phase Protait 2.1.1 Description of the 3D chaotic system 2.1.2 Definition of fractional derivative 2.1.3 Description of fractional order system 2.1.4 Numerical solution of the Fractional order chaotic system 2.2 Stability Analysis 2.2.1 Stability analysis of integral-order system 2.2.2 Stability analysis of fractional-order system 2.3 Lyapunov Exponent Analysis 2.4 Spectral Entropy Analysis Chapter 3 Synchronization of the 3D Chaotic System 3.1 The Theory of the Adaptive Control 3.2 Design an adaptive controller 3.3.1 Integral-order system adaptive controller 3.3.1 Fractional-order system adaptive controller 3.3 Synchronization of the 3D Chatic System by Adaptive Control 3.3.1 Synchronization of integral-order system 3.3.2 Synchronization of integral-order system 3.4 Synchronization of the 3D Chatic System with disturbances by Adaptive Control 3.3.1 Synchronization of integral-order system with disturbances 3.3.1 Synchronization of fractional-order system with disturbances Chapter 4 FPGA Implementation 4.1 Device Introduction 4.2 FPGA Implemntation of the 3D chaotic system 4.2.1 Discretization and implementation of the integral-order system 4.2.2 Discretization and implementation of the fractional-order system 4.3 FPGA Implemntation for Synchronization of the 3D chaotic system 4.3.1 Implementation of the integral-order system 4.3.2 Implementation of the integral-order system with disturbances 4.3.3 Implementation of the fractional-order system Chapter 5 Conculsion 5.1 Conculsion 5.2 Future Works Reference

    [1] Ivo Petr´asˇ, “Fractional-order Nonlinear Systems: Modeling, Analysis and Simulations’’, Higher Education Press, 2011.
    [2] E. N. Lorenz, “Deterministic nonperiodic flows”, J Atmos Sci, 20, 130–41, 1963.
    [3] T.Y. Li and J.A. Yorke, “Period three implies chaos”. Am Math Mon, vol. 82, no. 10, pp. 985–92, 1975.
    [4] K. Sun, “Chaotic Secure Communication: Principles and Technologies’’, De Gruyter, 2016.
    [5] L.M. Pecora and T.L. Carroll, “Synchronization in chaotic systems” Phys Rev Lett, vol. 64, no. 8, pp. 821–4, 1990.
    [6] L.M. Pecora and T.L. Carroll,“Driving systems with chaotic signals” Phys Rev A, 44(4), 2374–83, 1991.
    [7] T.T. Harrley, C.F. Lorenzo, and H.K. Qammer, “Chaos in a fractional order Chua’s system”, IEEE Transactions on Circuits and system I: Fundamental Theory and Applications, vol. 42, no. 8, pp. 485-490,1995.
    [8] C. Li and G. Chen, “Chaos and Hyperchaos in the fractional-order Rossler equations”, Physica A: Statistical Mechanics and its applications, vol. 341, pp. 55-61, 2004.
    [9] C. Li and G. Peng, “Chaos in Chen’s system with a fractional order”, Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443-450, 2004.
    [10] C. Li and G. Chen, “Chaos in the fractional order Chen system and its control”, Chaos, Solitons & Fractals, vol. 22, no. 3, p 549-554, 2004.
    [11] J.G Lu, “Chaotic dynamics of the fractional-order Lu system and its synchronization”, Physcis Letters A, vol. 354, no. 4, pp.305-311, 2006.
    [12] M.S. Tavazoei and M.L. Haeri, “Limitations of frequency-domain approximation for detecting chaos in fractional order systems”, Nonlinear analysis, vol. 69, no. 4, pp. 1299-1320, 2008.
    [13] O. Abdulaziz, N.F.M. Noor, and I. Hashim, “Further accuracy tests on Adomain decomposition method for chaotic systems”, Chaos, Solitons & Fratals, vol. 36, no. 5, pp.1405-1411, 2008.
    [14] H.H. Sun, A.A. Abdekwahab, and B. Onaral, “Linear approximation of transfer function with pole of fractional power”, IEEE transactions on Automatic Control, vol. 29, no. 5, pp. 441-444, 1984.
    [15] S. He, K. Sun, and H. Wang, “Dynamics of the fractional order Lorenz system based on Adomian decomposition method and its DSP implementation”, IEEE/CAA Journal of Automatica Sinica, 2016.
    [16] U. Parlitz and L. Junge, “Synchronization in chaotic systems”, Physical Review Letters, vol. 64, no. 8, pp.821-4, 1990.
    [17] K. Konishi, M. Hirai and H. Kokame, “Sliding mode control for class of chaotic systems”, Physics Letters A, vol.245, no.6, 511-517, 1998.
    [18] M. Rafikov and J. M. Balthazar, “On control and synchronization in chaotic and hyperchaotic systems via linear feedback control”, Communications in Nonlinear Science and Numerical Simulation, vol.13, no. 7, pp.1246-1255, 2008.
    [19] K. Tanaka, T. Ikeda and H.O. Wang, “A unified approach to controlling chaos via an LMI- based fuzzy control system design”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applicaions, vol. 45, no.10, pp. 1021-1040, 1998.
    [20] S. Chen and J.H. Lu, “Synchronization of uncertain unified chaotic system via adaptive control”, Chaos, Solitons & Fractals, vol. 14, no. 4, pp.643-647, 2002.
    [21] J.H. Park, “Synchronization of Genesio chaotic system via backstepping approach”, Chaos, Solitons & Fractals, vol. 27, no. 5, pp.1369-1375, 2006.
    [22] S. Mobayen, “Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control”, ISA Transcations, vol. 77, pp.100-111, 2018.
    [23] Y. Xian, C. Xia, T. Guo, and C. Xu, “Dynamial analysis and FPGA implementation of a large range chaotic system with coexisting attractors”, Results in Physics, 2018.
    [24] R.E. Gutiérrez, J.M. Rosário and J.T. Machado, “Fractional Order Calculus: Basic concepts and Engineering Applications”, Mathematical Problems in Engineering, 2010.
    [25] C. Liu, T. Liu, L. Liu and K. Liu, “A new chaotic attractor”, Chaos, Solitons & Fractals, vol. 22, no. 5, pp. 1031-1038, 2004.
    [26] J.M. He and F.Q. Chen, “A new fractional order hyperchaotic Rabinovich system and its dynamical behaviors”, International Journal of Non-Linear Mechanics, vol. 95, pp. 73-81,2017.
    [27] A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, “Determining Lyapunov exponents from a time series”, Physica D: Nonlinear Phenomena, vol.16, no.3, pp. 285-317, 1986.
    [28] G.E. Powell and I.C. Percival, “A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems’, Journal of Physics A: Mathematical and General, vol.12, no. 11, 1979.
    [29] I.D. Landau, R. Lozano, M. M'Saad, and A. Karimi, “Adaptive Control Algorithms, Analysis and Applications ”, Springer, 2011.
    [30] K.J, Astrom and B. Wittenmark, “Adaptive Control”, Dover publications, 2013.
    [31] Z. Gui, X.Wu and Y. Chen, “Chaos Synchronization of Master-slave Hyperbolic-type Generalized Lorenz Systems via Linear State Error Feedback Control”, Proceedings of the 27th Chinese Control Conference, Kunming, Yunnan, China, 2008.
    [32] S.M.A. Pahnehkolaei, A. Alfia, and J.A.T Machadob, “Chaos suppression in fractional systems using adaptive fractional state feedback control”, Chaos, Solitons & Fractals, vol. 103, pp.488-503, 2017.
    [33] Z.M. Ge and J.K. Yu, “Pragmatical Asymptotical Stability Theorems on Partial Region and for Partial Variables with Applications to Gyroscopic Systems”, Journal of Mechanics, vol. 16, no. 4, pp. 179-187, 2000.
    [34] Z.M. Ge and C.H. Yang, “Pragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive control”, Physica D: Nonliear Phenomena, vol. 231, no, 5, pp. 87-94, 2007.
    [35] A. R. Omondi and J.C. Rajapakse, “FPGA Implementations of Neural Networks”, Springer, 2006.
    [36] J.J. Rodriguez-Andina, M.J. Moure, and M.D. Valdes, “Features, Design Tools, and Application Domains of FPGAs”, IEEE Transcations on Industrial Electronic, vol. 54, no.4, pp. 1810-1823, 2007.
    [37] C.S. Peskin and T. Schlick, “Molecular Dynamics by the Backward Euler Method”, Communications on Pure and Applied Mathematics, vol.42, no.7, 1989.

    無法下載圖示 全文公開日期 2023/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE