簡易檢索 / 詳目顯示

研究生: 陳建明
Chien-Ming Chen
論文名稱: 應用強化式學習模糊控制於一類史都華平臺
Applying Reinforcement Learning Based Fuzzy Control to a Class of Stewart Platforms
指導教授: 徐勝均
Sheng-Dong Xu
口試委員: 柯正浩
Cheng-Hao Ko
黃旭志
Hsu-Chin Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 史都華平臺微控制器PID控制模糊控制Q學習模糊控制
外文關鍵詞: Stewart platform, MCU, PID control, fuzzy control, Q-learning-based fuzzy control
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 致謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 X 第1章 緒論 1 1.1 前言 1 1.2 研究背景與研究動機 2 1.3 論文架構 4 第2章 史都華系統架構與數學模型 5 2.1 史都華系統架構 5 2.2 史都華系統數學模型 7 2.3 史都華平臺座標系 9 第3章 史都華系統控制器設計 13 3.1 PID 控制器 13 3.2 模糊控制器(Fuzzy Control) 15 3.3 Q學習模糊控制器(Q-Learning-Based Fuzzy Control) 19 第4章 史都華系統硬體介紹 22 4.1 史都華系統方塊圖 22 4.1.1 史都華系統機構 23 4.1.2 史都華系統直流馬達 26 4.1.3 史都華系統控制器和軟體開發 30 4.1.4 史都華系統控制UI介面 34 第5章 實驗測試 38 5.1 定點軌跡 39 5.1.1 定點一座標軌跡追蹤 39 5.1.2 定點二座標軌跡追蹤 43 5.1.3 定點三座標軌跡追蹤 47 5.2 軌跡追蹤 51 5.2.1 方形軌跡追蹤 52 5.2.2 姿態軌跡追蹤 55 5.2.3 圓形軌跡追蹤 59 5.3 結論 64 5.4 未來展望 65 參考文獻 66

    [1] D. Stewart, “A platform with six degrees of freedom,” Proceedings of the Institution of Mechanical Engineers, vol. 180, no. 1, pp. 371-386, June 1965, 10.1243/PIME_PROC_1965_180_029_02.
    [2] G. Lebert, K. Liu, and F. L. Lewis, “Dynamic analysis and control of a stewart platform manipulator,” Journal of Robotic Systems, vol. 10, no. 5, pp. 629-655, July 1993, 10.1002./rob.4620100506.
    [3] M.-J. Liu, C.-X. Li, and C.-N. Li, “Dynamic analysis of the gough-stewart platform manipulator,” IEEE Transaction on Robotics and Automation, vol. 16, no. 1, pp. 94-98, Feb. 2000, 10.1109/70.833196.
    [4] J. Wang and C. M. Gosselin, “A new approach for the dynamic analysis of parallel manipulators,” Multibody System Dynamics, vol. 2, pp. 317-334, Sep. 1998, 10.1023/A:1009740326195.
    [5] J.-P. Merlet, “Direct kinematics of planar parallel manipulators,” in Proc. IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, April 22-28, 1996, pp. 3744-3749, 10.1109/ROBOT.1996.509284.
    [6] F. Firmani and R. P. Podhorodeski, “Singularity analysis of planar parallel manipulators based on forward kinematic solutions,” Mechanism and Machine Theory, vol. 44, no. 7, pp. 1386-1399, 2009, 10.1016/j.mechmachtheory.2008.11.005.
    [7] K. Liu, J. M. Fitzgerald, and F.L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Transactions on Industrial Electronics, vol. 40, no. 2, pp. 282-293, 1993, 10.1109/41.222651.
    [8] M. J. Zyda, R. B. McGhee, R. S. Ross, D. B. Smith, and D. G. Streyle, “Flight simulators for under $100000,” IEEE Computer Graphics and Applications, vol. 8, no. 1, pp. 19-27, 1988, 10.1109/38.487.
    [9] G. Cirio, M. Marchal, S. Hillaire, and A. Lecuyer, “Six degrees-of-freedom haptic interaction with fluids,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 11, pp. 1714-1727, Nov. 2011, 10.1109/TVCG.2010.271.
    [10] E. F. Fichter, “A Stewart platform-based manipulator: General theory and practical construction,” The International Journal of Robotics and Research, vol. 5, no. 2, pp. 157-182, 1986, 10.1177/027836498600500216.
    [11] K.-M. Lee and D. K. Shah, “Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator,” IEEE Journal on Robotics and Automation, vol. 4, no. 3, pp. 354-360, 1988, 10.1109/ROBOT.1987.1087843.
    [12] 鄭偉凡,「基於史都華平臺之船舶動態重現之研究」,國立高雄海洋科技大學輪機工程研究所碩士論文,2006。
    [13] Z. Wang, J. He, and H. Gu, “ Forward kinematics analysis of a six-degree-of-freedom Stewart Platform based on independent component analysis and nelder–mead algorithm,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41, no. 3, pp. 589-597, 2011, 10.1109/TSMCA.2010.2076405.
    [14] T. Tanikawa, T. Arai, and T. Masuda, “Development of a micro-manipulation system having a two-fingered micro-hand” IEEE Transaction on Robotics and Automation, vol. 15, no. 1, pp. 152-162, 1999, 10.1109/IROS.1996.571063.
    [15] MathWorks: Modeling the Stewart platform. [Online]. Available: https://www. mathworks.com/help/physmod/sm/examples/stewart-platform.html, Accessed on: June 26, 2020
    [16] Mathworks: Stewart platform mechanical system. [Online]. Available: https:// www.mathworks.com/matlabcentral/fileexchange/2334-stewart-platform-mechanical-system, Accessed on: June 26, 2020
    [17] Mathworks: Stewart platform controller tuning. [Online]. Available: https:// www.mathworks.com/help/sldo/examples/stewart-platform-controller-tuning.html. Accessed on: June 26, 2020
    [18] 張碩,詹森,自動控制系統,鼎茂圖書出版股份有限公司,2009。
    [19] Y. Bo, P. Zhongcai, and T. Zhiyong, “Fuzzy PID control of Stewart platform,” in Proc. International Conference on Fluid Power and Mechatronics, Beijing, China, Aug. 17-20, 2011, 10.1109/FPM.2011.6045863.
    [20] K. Yaovaja, “Ball balancing on a Stewart platform using fuzzy supervisory PID visual servo control,” in Proc. International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA), Krabi, Thailand, Aug. 14-17, 2018, 10.1109/ICAICTA.2018.8541349.
    [21] M. S. Ayas, E. Sahin, and I. H. Altas, “Trajectory tracking control of a Stewart platform,” in Proc. International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, Sep. 21-24, 2014, 10.1109/EPEPEMC.2014.6980582.
    [22] J. M. Rossell, F.-P. Quiñonero, J.-R. Massegú, and J.-V. Rodrigo, “Tracking control for a Stewart platform prototype,” in Proc. International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, Oct. 5-17, 2015, 10.1109/ICAMIMIA.2015.7508003.
    [23] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353,1965, 10.1016/S0019-9958(65)90241-X
    [24] E. H. Mamdani, “Application of fuzzy algorithms for control of a simple dynamic plant,” in Proc. Institution of Electrical Engineers, London, UK, Dec. 1974, vol. 121, no.12, pp.1585-1588, 10.1049/piee.1974.0328.
    [25] G. K. Mann, and B. W. Surgenor, “Model-free intelligent control of a 6-DOF Stewart-Gough based parallel manipulator,” in Proc. International Conference on Control Applications, Glasgow, UK, Sep. 18-20, vol. 1, pp. 495-500, 2002, 10.1109/CCA.2002.1040235.
    [26] I.-F. Chung, H.-H. Chang, and C.-T. Lin, “Fuzzy control of a six-degree motion platform with stability analysis,” in Proc. IEEE International Conference on System, Man, and Cybernetics (SMC’99), Tokyo, Japan, Oct. 12-15, 1999, vol. 1, pp. 325-330, 10.1109/ICSMC.1999.814111.
    [27] Z. Zyada, Y. Hasegawa, and T. Fukuda, “Force control with fuzzy compensation of gravity and actuators' friction forces of a hydraulic parallel link manipulator,” in Proc. IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, Oct. 6-9, 2002, vol. 2, 10.1109/ICSMC.2002.1173410.
    [28] 王文俊,認識Fuzzy,第四版,全華科技圖書股份有限公司,2005年。
    [29] J. M. Mendel, “Fuzzy logic systems for engineering: A tutorial,” Proceedings of the IEEE, vol. 83, no. 3, pp. 345-377, March 1995, 10.1109/5.364485.
    [30] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller.1,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-418, Mar/Apr, 1990, 10.1109/21.52551.
    [31] P. Xue, H. Wang, J. Hou, and W. Li, “Based on the fuzzy PID brushless DC motor control system design,” in Proc. International Conference on Measurement, Information and Control, Harbin, China, May 18-20, 2012, 10.1109/MIC.2012.6273389.
    [32] H.-P. Wang, “Design of fast fuzzy controller and its application on position control of DC motor,” in Proc. International Conference on Consumer Electronics, Communications and Networks (CECNet), XianNing, China, April 16-18, 2011, 10.1109/CECNET.2011.5768497.
    [33] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement learning:A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38, Nov. 1998, 10.1109/MSP.2017.2743240.
    [34] Q. Wang and Z. Zhan, “Reinforcement learning model, algorithms and its application,” in Proc. International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, Aug. 19-22, 2011, 10.1109/MEC.2011.6025669.
    [35] A. Tripathi, T. S. Ashwin, and R. M. R. Guddeti, “A reinforcement learning and recurrent neural network based dynamic user modeling system,” in Proc. IEEE International Conference on Advanced Learning Technologies (ICALT), Mumbai, India, July 9-13, 2018, 10.1109/ICALT.2018.00103.
    [36] C. Martinez, G. Perrin, E. Ramasso, and M. Rombaut, “A deep reinforcement learning approach for early classification of time series,” in Proc. European Signal Processing Conference, Rome, Italy, Sep. 3-7, 1997, 10.23919/EUSIPCO.2018.8553544.
    [37] D. Potnuru and J. S. V. S. Kumar, “Design of a front-end DC-DC converter for a permanent magnet DC motor using fuzzy gain scheduling,” in Proc. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, Sep. 21-22, 2017, 10.1109/ICPCSI.2017.8391962.
    [38] S. Mondal, A. Nandi, I. Mallick, C. Ghosh, and A. Giri, “Performance evaluation of brushless DC motor drive for three different types of MOSFET based DC-DC converters,” in Proc. Devices for Integrated Circuit (DevIC), Kalyani, India, March 23-24, 2017, 10.1109/DEVIC.2017.8074019.
    [39] Y. Jia, J. Liu, and F. Jiang, “Design of DC motor wireless controller based on MCU MSP430,” in Proc. International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shengyang, China, Dec. 20-22, 2013, 10.1109/MEC.2013.6885610.
    [40] MSP430F5529 LaunchPad™ Development Kit. [Online]. Available: https://www.ti.com, Accessed on: Jan. 1, 2020.
    [41] C.-T. Chu, Y.-K. Wang, and H.-L. Liang, “SISO PID-fuzzy controller for BLDC motor speed control base on low cost MSP430 solution,” in Proc. International Symposium on Next-Generation Electronics (ISNE), Hsinchu, Taiwan, May 4-6, 2016, 10.1109/ISNE.2016.7543331.
    [42] X. Zhang, Y. X. Fu, and Y. G. Wang, “Design and implementation of smart home monitoring system based on MSP430,” in Proc. IEEE Symposium on Electrical & Electronics Engineering (EEESYM), Kuala Lumpur, Malaysia, June 24-27, 2012, 10.1109/EEESym.2012.6258598.
    [43] D. Bhadra and K. S. Stevens, “Design of a low power, relative timing based asynchronous MSP430 microprocessor,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, March 27-31, 2017, 10.23919/DATE.2017.7927097.
    [44] M. Sharma, N. Agarwal, and S. R. N. Reddy, “Design and development of daughter board for USB-UART communication between Raspberry Pi and PC,” in Proc. International Conference on Computing, Communication & Automation, Noida, India, May 15-16, 2015, 10.1109/CCAA.2015.7148532.
    [45] K. Kumar, A. Kaur, B. Pandey, and S. N. Panda, “Low power uart design using different nanometer technology based FPGA,” in Proc. International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, Nov. 24-26, 2018, 10.1109/CSNT.2018.8820281.
    [46] H. M. Saputra, A. Nurhakim, and M. N. Firdaus, “Servo motor controller device for stewart platform based on simple pulse generator,” in Proc. International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Tangerang, Indonesia, Oct. 23-24, 2019, 10.1109/ICRAMET47453.2019.8980422.
    [47] D. Draxelmayr and R. Borgschulze, “A dynamic differential Hall IC with current interface for automotive sensor applications,” in Proc. International Solids-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, Feb. 8, 1997, 10.1109/ISSCC.1997.585334.
    [48] IAR system [Online]. Available: https://www.iar.com/, Accessed on: Oct. 1, 2019.
    [49] Microsoft Visual studio [Online]. Available: https://visualstudio.microsoft.com/zh-hant/, Accessed on: Oct. 1, 2019.
    [50] M. Xu, Y. Zhang, and G. Wang, “Design of intelligent streetlight monitoring system based on STM32,” in Proc. IEEE Symposium on Electrical & Electronics Engineering, Kuala Lumpur, Malaysia, June 24-27, 2015, 10.1109/EEESym.2012.6258586
    [51] Q. Yi, M. Shi, and S. Li, “Design of USB-UART interface converter and its FPGA implementation,” in Proc. IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, March 25-26, 2017, 10.1109/IAEAC.2017.8054244.
    [52] D. S. Negash, and R. Mitra, “Integral sliding mode controller for trajectory tracking control of Stewart platform manipulator,” in Proc. International Conference on Industrial and Information Systems, Mangalore, India, July 29 - Aug. 1, 2010, 10.1109/ICIINFS.2010.5578628.
    [53] M. Mamoon and Saifullah, “Inverse kinematics and path planning of Stewart platform using crank arm actuation system,” in Proc. International Conference on Industrial and Information Systems, Islamabad, Pakistan, Jan. 14-18, 2010, 10.1109/IBCAST.2014.6778142.
    [54] S. H. Lee, J. B. Song, W. C. Choi, and D. Hong, “Position control of a Stewart platform using inverse dynamics control with approximate dynamics,” Mechatronics, vol. 13, no. 6, pp. 605-619, 2003, 10.1016/S0957-4158(02)00033-8.
    [55] 謝凱勳,「設計與實現一類基於PLC的史都華平臺」,國立臺灣科技大學自動化及控制研究所,2017。
    [56] 黃翰祥,「一類史都華平臺之設計與實現」,國立臺灣科技大學自動化及控制研究所,2016。

    無法下載圖示 全文公開日期 2025/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE