簡易檢索 / 詳目顯示

研究生: 謝慶星
Ching-Hsing Hsieh
論文名稱: 結合田口法與模糊控制之鋰離子電池五階段充電技術之研究
Research on the Five Step Charging Technique for Li-ion Batteries Using Taguchi Method and Fuzzy Control
指導教授: 劉益華
Yi-Hua Liu
口試委員: 劉添華
Tian-Hua Liu
羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
呂榮基
Rong-Ceng Leou
鄧人豪
Teng Jen-Hao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 田口方法模糊田口法連續直交表模糊控制五階段定電流充電.
外文關鍵詞: Taguchi Method, Fuzzy-Taguchi Method, Consecutive Orthogonal Array, Fuzzy Control, Five-Step Constant Current Charging Algorithm.
相關次數: 點閱:415下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技日新月異,產品推陳出新,鋰離子電池以其優越的特性包括高能量密度、低維護成本、高操作電壓、低自放率及無記憶效應等,遂成為市場眾多電子產品的電源首選。而鋰離子電池的充電效率及壽命與其充電波形品質息息相關。換言之,若要同時達到縮短充電時間及延長電池壽命之目的,則勢必要取得一理想充電波形以最佳化電池性能。
    本論文利用田口方法及模糊控制為架構,以獲取一理想充電波形。論文中第一部分說明利用連續直交表技術以取得五階段定電流法各階段最佳電流設定值的過程及方法,有關因子分析、實現步驟及變數設定等在文中均提供詳細說明。實驗結果顯示,本文所得之最佳五階段定電流充電法電流設定值能在130分鐘內將鋰離子電池回充至額定電量的95%,與傳統的定電流-定電壓(CC-CV)充電法比較,除了較短的充電時間及更安全的充電,更能延長鋰離子電池的循環壽命(Cycle Life)。論文中第二部分提出「模糊控制為基礎之五階段電流充電法(Fuzzy-Control-Based Five-Step Charging Algorithm, FCBFSCA)」,本方法以電池溫度作為電流控制指標以改善五階段定電流充電法之效率。為使FCBFSCA最佳化,本論文利用模糊田口法搜尋最佳輸出歸屬函數設定值。完成搜尋後亦進行確認實驗以證實所提出的模糊¬田口法之正確性¬。根據實驗結果,本論文所獲得之最佳輸出歸屬函數設定值其優點包括較短的充電時間及較高的充電容量。


    Lithium-ion (Li-ion) batteries have emerged as the major power source for today’s electronic products because they can offer advantages such as high energy density, low maintenance requirement, high open circuit voltage (OCV), low self-discharge rate and lack of memory effect. The performance and lifespan of Li-ion batteries are closely related to the quality of the charging pattern. Therefore, an optimal charging pattern is essential for Li-ion batteries to achieve shorter charging time and longer cycle life.
    In this dissertation, Taguchi method and Fuzzy control are utilized to obtain the optimal charging algorithms for Li-ion batteries. In the first part of this dissertation, consecutive orthogonal array (COA) technique is utilized to determine the optimal charging pattern for five-step constant current charging method. The problem formulation, implementation procedure and parameter setting method are described and explained in detail. Experimental results show that the obtained charging pattern is capable of charging the Li-ion batteries to 95% capacity in 130 minutes. Comparing to the conventional constant current–constant voltage (CC-CV) method, the benefits of the obtained pattern are faster and safer charging and longer battery cycle life. In the second part of this dissertation, a fuzzy-control-based five-step charging algorithm (FCBFSCA) is proposed. The proposed FCBFSCA takes the battery temperature into account and adjusts the charging current accordingly. To further improve the performance of the FCBFSCA, a fuzzy-based Taguchi method is utilized to obtain the optimal setting value of the output membership function. After the optimal setting value is acquired, a confirmation experiment is conducted to validate the effectiveness of the proposed fuzzy-based Taguchi method. According to the experimental results, the charging efficiency of the proposed system can be increased and the performance of the proposed charger can be improved. The advantages of the proposed method include shorter charging time and higher charged capacity.

    摘要 I Abstract II 誌謝 IV 目錄 V 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的 3 1.4 論文大綱 4 第二章 二次電池與二次電池充電技術概說 6 2.1 二次電池構造及化學反應 6 2.1.1 鉛酸電池 6 2.1.2 鎳鎘電池 7 2.1.3 鎳氫電池 8 2.1.4 鋰電池 9 2.1.4.1 鋰離子電池 10 2.1.4.2 鋰聚合物電池 10 2.2 二次電池性能比較 11 2.3 二次電池充電技術概說 13 2.3.1 定電壓(CV)充電法 13 2.3.2 定電流(CC)充電法 14 2.3.3 定電流切換定電壓(CC-CV)充電法 14 2.3.4 脈衝式充電法 15 2.3.5 ReflexTM充電法 16 2.3.6 五階段充電法 17 第三章 田口方法與連續直交表簡介 19 3.1田口式實驗法簡介 19 3.2 田口方法與步驟 21 3.2.1直交表簡介 24 3.2.2 連續直交表 28 3.3田口方法之最佳化搜尋流程 30 第四章 使用連續直交表進行五階段定電流充電法最佳化電流設定值搜尋 35 4.1 連續直交表原理 35 4.2 使用連續直交表進行五階段定電流最佳化設定值搜尋 36 4.2.1充電電流組合 37 4.2.2 連續直交表設定 38 4.3 使用連續直交表進行五階段定電流最佳化設定值搜尋之實驗結果 42 4.4 連續直交表實驗結論與討論 49 第五章 使用模糊田口方法進行模糊五階段充電法則之最佳化輸 出歸屬函數設定值搜尋 50 5.1 模糊理論與模糊控制器簡介 50 5.2 模糊五階段充電法則與模糊田口方法簡介 53 5.2.1本文使用之模糊五階段充電機 53 5.2.2模糊田口法介紹 61 5.3模糊田口法則之最佳化歸屬函數設定值之實現 62 5.3.1本文使用之模糊田口法之模糊控制器設計 62 5.3.2模糊田口法之最佳化歸屬函數設定值搜尋流程 65 5.3.3模糊田口法之最佳化歸屬函數設定值搜尋實驗結果 66 第六章 結論與未來研究方向 71 6.1 結論 71 6.2 未來研究方向 72 參考文獻 74

    [1] S. Lee, J. Kim, J. Lee , “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” J. Power Sources, vol. 185, no. 2, pp. 1367–1373, Dec. 2008.
    [2] J. Lee, O. Nam, and B.H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering,” J. Power Sources, vol. 174, no. 1, pp. 9–15, Nov. 2007.
    [3] Y. C. Chuang, and Y. L. Ke, “High-efficiency and low-stress ZVT–PWM DC-to-DC converter for battery charger,” IEEE Trans. on Industrial Electronics, vol. 55, no. 8, pp.3030–3037, Aug. 2008.
    [4] S. Kim, “Nonlinear state of charge estimator for hybrid electric vehicle battery,” IEEE Trans. on Power Electronics, vol. 23, no. 4, pp. 2027–2034, July 2008.
    [5] M. A. Alahmad, and H. L. Hess, “Evaluation and analysis of a new solid-state rechargeable microscale lithium battery,” IEEE Trans. on Industrial Electronics, vol. 55, no. 9, pp.3391–3401, Sept. 2008.
    [6] M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From single cell model to battery pack simulation for Li-ion batteries,” J. Power Sources, vol. 186, no. 2, pp. 500–507, Jan. 2009.
    [7] 利仁中,「以FPGA為基礎之鋰電池充電系統之研製」,長庚大學電機工程研究所論文,民國九十三年。
    [8] L. R. Chen, “PLL-based battery charge circuit topology,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1344–1346, Dec. 2004.
    [9] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
    [10] B. P. McGrath, D. G. Holmes, P. J. McGoldrick, and A. D. McIver, “Design of a soft-switched 6-kW battery charger for traction applications,” IEEE Transactions. on Power Electronics, vol. 22, no. 4, pp. 1136–1144, July 2007.
    [11] Kirchev, M. Perrin, and E. Lemaire, “Studies of the pulse charge of lead-acid batteries for PV applications Part I. Factors influencing the mechanism of the pulse charge of the positive plate,” J. Power Sources, vol. 177, no. 1, pp. 217–225, Feb. 2008.
    [12] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
    [13] L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 398–405, Feb. 2007.
    [14] P. Thounthong, S. Rael, and B. Davat, “Control algorithm of fuel cell and batteries for distributed generation system,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 148–155 Mar. 2008.
    [15] T. Ikeyaa, N. Sawadab, J. I. Murakamic, “Multi-step constant-current charging method for an electric vehicle nickel/metal hydride battery with high-energy efficiency and long cycle life,” J. Power Sources, vol. 105, no. 1, pp. 6–12, Jan. 2002.
    [16] J.H. Yan, H.Y. Chena, and W.S. Li, “A study on quick charging method,” J. Power Sources, vol. 158, no. 2, pp. 1047–1053, Aug. 2006.
    [17] C. F. Juang, C. M. Lu, C. Lo, and C. Y. Wang, “Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation,” IEEE Trans. on Industrial Electronics, vol. 55, no. 3, pp. 1453–1462, Mar. 2008.
    [18] F. Tao, D. Zhao, Y. Hu, and Z. Zhou, “Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system,” IEEE Trans. on Industrial Electronics, vol. 4, no. 4, pp. 315–327, Nov. 2008.
    [19] B. Biswal, P. K. Dash, and B. K. Panigrahi, “Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization,” IEEE Trans. on Industrial Electronics, vol. 56, no. 1, pp. 212–220, Jan. 2009.
    [20] K. Sundareswaran and V. T. Sreedevi, “Boost converter controller design using queen-bee-assisted GA,” IEEE Trans. on Industrial Electronics, vol. 56, no. 3, pp. 778–783, Mar. 2009.
    [21] Y. H. Liu, J. H. Teng, and Y. C. Lin “Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm,” IEEE Trans. on Industrial Electronics, vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
    [22] P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, New York: McGraw-Hill, 1996.
    [23] D. Liu, and Ying Cai, “Taguchi method for solving the economic dispatch Problem with nonsmooth cost functions,” IEEE Trans. on Power Systems, vol. 20, no. 4, pp. 2006–2014, Nov. 2005.
    [24] Y. T. Liu, R. F. Fung, and C. C. Wang, “Application of the nonlinear, double-dynamic Taguchi method to the precision positioning device using combined piezo-VCM actuator,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 240–250, Feb. 2007.
    [25] W. C. Weng, F. Yang, and A. Z. Elsherbeni, “Linear antenna array synthesis using Taguchi’s method: a novel optimization technique in electromagnetics,” IEEE Trans. on Antennas and Propagation, vol. 55, no. 3, pp. 723–730, Mar. 2007.
    [26] H. H. Rivera, J. S. Leal, and A. V. Chavez, “Improving a soldering process applying the dual response approach to a Taguchi's orthogonal array,” Int. Conf. Computers & Industrial, pp. 1174-1178, July 2009.
    [27] Y. P. Chang, C. Low, and C. J. Wu, “Optimal design of discrete-value passive harmonic filters using sequential neural-network approximation and orthogonal array,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1813–1821 July 2007.
    [28] L.M. Moore, M.D. McKay, and K.S. Campbell, “Combined array experiment design,” Reliability Engineering & System Safety, vol. 91, no. 10-11, pp. 1281–1289 Oct.-Nov. 2006.
    [29] C. C. Chou, N. M. Liu and J. T. Horng, “Designing parameter optimization of a Parallel-Plain Fin heat sink using the grey-based fuzzy algorithm with the orthogonal arrays,” International Journal of Thermal Sciences, vol. 48, no. 2, pp. 2271–2279 Dec. 2009.
    [30] Yi-Hwa Liu and Yi-Feng Luo, “Search for an Optimal Rapid-Charging Pattern for Li-Ion Batteries Using the Taguchi Approach,” Industrial Electronics, IEEE Transactions on, vol. 57, pp. 3961-3971, 2010.
    [31] Yi-Hwa Liu, Ching-Hsing Hsieh and Yi-Feng Luo, “Search for an Optimal Five-Step Charging Pattern for Li-Ion Batteries Using Consecutive Orthogonal Arrays,” Energy Conversion, IEEE Transactions on, vol. 26, pp. 654-661, 2011.
    [32] 劉衍慶,「使用PCB變壓器實現之非接觸式鋰電池充電系統」,長庚大學電機工程研究所論文,民國九十五年七月。
    [33] H. J. Chiu, L. W. Lin, P. L. Pan, and M. H. Tseng, “A novel rapid charger for lead-acid batteries with energy recovery,” IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 640–647, May 2006.
    [34] J.B. Wang, and C.Y. Chuang, “Design considerations of microprocessor-controlled multiphase battery charger with fast-charging strategy,” IET on Electric Power Applications, vol. 1, no. 2, pp. 143–152, Mar. 2007.
    [35] C. H. Lin, C. L. Chen, Y. H. Lee, S. J. Wang, C. Y. Hsieh, H. W. Huang and K. H. Chen, “Fast charging technique for Li-ion battery charger,” Proc. of IEEE Electronics, Circuits and Systems International Conference, pp. 618 – 621, Sep. 2008.
    [36] V. Svoboda, H. Doering, and J. Garche, “The influence of fast charging on the performance of VRLA batteries,” J. Power Sources, vol. 144, no. 1, pp. 244–254, Jun. 2005.
    [37] M. James, J. Grummett, and M. Rowan, “Application of pulse charging techniques to submarine lead-acid batteries,” J. Power Sources, vol. 162, no. 2, pp. 878–883, Nov. 2006.
    [38] Y. C. Hsieh, C. S. Moo, C. K. Wu and J. C. Cheng, “A Non-dissipative Reflex Charging Circuit,” Proc. of Telecommunications Energy International Conference, October 2003, pp. 679 – 683.
    [39] P. C. Lin, Y. H. Liu, J. K. Chen, and C. H. Chen, “A fully digital rapid charger for electric scooters,” Proceedings of the Eighteenth Symposium on Electrical Vehicles, 2001.
    [40] 劉彥余,「最佳化鋰電池充電法則研究與充電電路之實現」,國立台灣科技大學電機工程系碩士學位論文,民國九十七年一月。
    [41] 李輝煌,「田口方法:品質設計的原理與實務」,高立圖書有限公司,2000年。
    [42] C. S. Moo, H. C. Yen, C. R. Lee, and I. S. Tsai, “Designing LC filters by consecutive orthogonal arrays,” IEE Proceedings on Electric Power Applications, vol. 150, no. 5, pp. 569–574, Sep. 2003.
    [43] R. K. Roy, “Design of experiments using the Taguchi approach,” John Wiley & Sons, Inc., 2001.
    [44] P. J. Ross, “Taguchi techniques for quality engineering,” McGraw-Hill, Inc., 1988.
    [45] 王進德、蕭大全,「類神經網路與模糊控制理論入門」,全華科技圖書,民國92年9月。
    [46] 李允中、王小璠、蘇木春,「模糊理論及其應用」,全華科技圖書,民國93年2月。
    [47] 王文俊,「認識Fuzzy」第二版,全華科技圖書,民國92年10月。
    [48] H. Li, W. Y. Wang, S. F. Su, and Y. S. Lee, “A Merged Fuzzy Neural Network and Its Applications in Battery State-of-Charge Estimation,” IEEE Transaction on Energy Conversion, Vol.22, No. 3, September 2007, pp. 697-708.
    [49] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-Controlled Li-ion Battery Charge System with Active State-of-Charge Controller,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, June 2001, pp. 585-593.
    [50] 蕭子建、王智昱、儲昭偉,「虛擬儀控程式設計-LabVIEW7X」,高立圖書,民國九十三年三月。
    [51] 蕭子建、王智昱、儲昭偉,「LabVIEW進階篇」,高立圖書,民國八十九年五月。
    [52] H. Surmann, “Genetic Optimization of a Fuzzy System for Charging Batteries,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 5, October 1996, pp. 541-548.
    [53] E. L. Chan, N. A. Rahim and S. Mekhilef, “DSP-Based Fuzzy Logic Controller for a Battery Charger,” Proc. of IEEE Computers, Communications, Control and Power Engineering Conference, Vol.3, October 2002, pp. 1512-1515.
    [54] 林季鋒,「應用模糊控制於正負脈衝充電法之快速充電器」,國立中央大學電機工程研究所碩士學位論文,民國九十一年六月。
    [55] 李孜賾,「以模糊控制為基礎之五階段鋰電池充電機」,國立台灣科技大學電機工程系碩士學位論文,民國九十八年六月。

    無法下載圖示 全文公開日期 2016/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE