簡易檢索 / 詳目顯示

研究生: 廖柏舜
Po-Shun Liao
論文名稱: 使用田口方法與有限元素分析法於前方板型固定器之拉出強度參數化設計
Parametric study for pullout strength of vertebral bone plate using FEM-Based Taguchi Methods
指導教授: 趙振綱
Ching-kong Chao
徐慶琪
Ching-chi Hsu
口試委員: 釋高上
Kao-shang Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 有限元素模擬田口方法傾角椎骨螺絲前方板型固定器生物力學測試
外文關鍵詞: Inclination angle, Bone screw, Anterior vertebral plate, Taguchi method, Finite element analysis, Mechanical test
相關次數: 點閱:238下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 手術後於臨床追蹤觀察發現,初期脊椎骨融合必須依靠內固定器作為穩定脊柱之功用,以促進骨融合速率。但人體會因自重負荷加上彎曲及扭轉之動作,使得脊椎內固定器螺絲與椎骨咬合界面會產生滑動現象,造成固定器之椎骨螺絲會有鬆脫、破壞與失去原有手術後之矯正度;為此如何提升固定器之椎骨螺絲的骨咬合強度,以提高脊柱之穩定度,成為脊椎內固定器設計的首要課題。
    本研究目的即是評估椎骨螺絲傾角變化對此設計之前方板型固器於拉出強度的影響,因此建立三維前方板型固定器之拉出強度模型,並透過田口參數化方法來探討其參數的設計,經由資料解析,找出最佳設計之參數;最後將田口直交表設計之其中四組模型與最佳化模型進行生物力學拉出測試,並驗證數值分析與生物力學測試之相關性。
    研究結果顯示,最佳設計為(A13A23A33A43D13D23D33)組合,其右側椎骨螺絲之橫切面傾角(A1)與左側椎骨螺絲之橫切面傾角(A3)為最重要設計因子,其次為右側椎骨螺絲之正前面傾角(A2)與左側椎骨螺絲之正前面傾角(A4)為次要設計因子;並於線性相關方法中發現,生物力學測試與有限元素模擬之相關係數為0.944,代表著有限元素模擬可以有效地預測生物力學測試。本研究之最佳螺絲植入傾角,有助於提高骨咬合強度,因此建議當前方板型固定器之椎骨螺絲植入椎骨時,考慮傾角鎖入,所形成之咬合三角面積,能有效抵抗椎骨螺絲產生的鬆脫現象,便能增進整體脊柱之穩定性。


    Anterior vertebral plates (AVPs) can provide the initial stability in the fixation of spinal fractures or diseases. However, in clinical point of view the AVPs may fail after the surgical operation. One of failure modes for the AVPs is fixator loosening. This complication may cause loss of fracture fixation in the impairment of fracture healing and threaten the bone fusion rate. The purpose of this research was to evaluate the effects of the bone screw inclination angles on the designs of the AVPs regarding the pullout strength.
    To investigate the pullout strength of the AVPs with different bone screw inclination angles, three-dimensional nonlinear finite element models were created and analyzed with use of ANSYS Workbench. Then, the parametric study was done by using Taguchi robust design methods. The optimum design and the significant factors for the AVPs were also obtained. Finally, the results of the finite element models would be validated by using the mechanical tests. The results showed that the transverse plane inclination angle in right side screw (30.7%) and the transverse plane inclination angle in left side screw (32.7 %) were important factors. The optimum combination of the AVPs was A13A23A33A43D13D23D33 (the transverse plane inclination angle in right side screw was 12°, the frontal plane inclination angle in right side screw was 5.5°, the transverse plane inclination angle in left side screw was 12°, the frontal plane inclination angle in left side screw was 5.5°, the distance between the right side screw and the middle of the AVP was 40 mm , the distance between the left side screw and the middle of the AVP was 40 mm , and the distance between the right side screw and left side screw was 16 mm). The reaction force obtained from the finite element analyses was closely related to the pullout strength obtained from the mechanical tests with a high correlation coefficient of 0.944.
    In conclusion, the optimum AVPs can be acquired with use of Taguchi-based finite element methods. The validated finite element models can effectively predict the pullout strength of the AVPs. The result of this research can assist the engineers to design new AVPs and provide the biomechanical suggestions to orthopedic surgeons.

    中文摘要-------------------------------------------------I 英文摘要------------------------------------------------II 致謝---------------------------------------------------III 目錄----------------------------------------------------IV 符號索引-----------------------------------------------VII 圖表索引-------------------------------------------------X 第一章 緒論----------------------------------------------1 1.1 研究背景、動機與目的----------------------------1 1.2 脊椎解剖學構造簡介 ------------------------------6 1.2.1 典型椎骨組成------------------------------------6 1.2.2 脊柱之區域構造和功能----------------------------7 1.3 文獻回顧---------------------------------------14 1.3.1 內固定器之臨床手術案例-------------------------14 1.3.2 生物力學之內固定器剛性測試---------------------16 1.3.3 生物力學之內固定器的螺絲骨咬合強度測試---------19 1.4 本文架構---------------------------------------22 第二章 研究方法-----------------------------------------23 2.1 研究程序---------------------------------------23 2.2 電腦斷層掃瞄-----------------------------------24 2.2.1 脊椎影像取得-----------------------------------24 2.2.2 脊椎幾何尺寸量測-------------------------------26 2.3 有限元素法簡介---------------------------------29 2.4 板型固定器拉出強度之有限元素模型建立-----------31 2.5 有限元素分析-----------------------------------35 2.5.1 材料性質的給定---------------------------------35 2.5.2 界面條件設定-----------------------------------36 2.5.3 網格設定---------------------------------------36 2.5.4 邊界條件---------------------------------------37 2.6 收斂性分析-------------------------------------40 2.7 靈敏度分析-------------------------------------43 2.8 田口參數化分析---------------------------------44 2.9 生物力學測試-----------------------------------52 2.9.1 前方板型固定器與椎骨螺絲介紹-------------------52 2.9.2 人造假骨之簡介---------------------------------52 2.9.3 椎骨螺絲定位之冶具設計-------------------------53 2.9.4 生醫材料測試系統-------------------------------53 2.9.5 拉出強度之生物力學測試-------------------------53 2.9.6 拉出強度之數值統計-----------------------------54 第三章 結果---------------------------------------------59 3.1 脊椎幾何尺寸量測結果---------------------------59 3.2 拉出強度有限元素分析結果-----------------------65 3.2.1 收斂性分析-------------------------------------65 3.2.2 位移分佈圖-------------------------------------66 3.2.3 靈敏度分析-------------------------------------66 3.2.4 因子折線圖與變異數分析-------------------------67 3.2.5 驗證實驗分析-----------------------------------68 3.3 拉出強度之生物力學測試結果---------------------73 3.3.1 拉出強度之統計分析-----------------------------73 第四章 討論---------------------------------------------77 4.1 椎骨螺絲定位之拉出強度有限元素分析探討---------77 4.2 椎骨螺絲定位之拉出強度測試探討-----------------78 4.3 綜合討論---------------------------------------79 第五章 結論與未來展望-----------------------------------85 5.1 結論-------------------------------------------85 5.2 未來展望---------------------------------------86 參考文獻------------------------------------------------87 附錄----------------------------------------------------90 作者簡介------------------------------------------------95

    [1]Holman P. J., Suki D., McCutcheon I., Wolinsky J.-P., Rhines L. D., and Gokaslan Z. L., "Surgical management of metastatic disease of the lumbar spine: experience with 139 patients," Journal of Neurosurgery: Spine, vol. 2, No. 5, pp. 550-563, (2005).
    [2]Jin D., Qu D., Chen J., and Zhang H., "One-stage anterior interbody autografting and instrumentation in primary surgical management of thoracolumbar spinal tuberculosis," European Spine Journal, vol. 13, No. 2, pp. 114-121, (2004).
    [3]Sethi M. K., Schoenfeld A. J., Bono C. M., and Harris M. B., "The evolution of thoracolumbar injury classification systems," The Spine Journal, vol. 9, No. 9, pp. 780-788, (2009).
    [4]Kim D. H., Jahng T. A., Balabhadra R. S. V., Potulski M., and Beisse R., "Thoracoscopic transdiaphragmatic approach to thoracolumbar junction fractures," The Spine Journal, vol. 4, No. 3, pp. 317-328, (2004).
    [5]McDonough P. W., Davis R., Tribus C., and Zdeblick T. A., "The Management of Acute Thoracolumbar Burst Fractures with Anterior Corpectomy and Z-Plate Fixation," Spine, vol. 29, No. 17, pp. 1901-1908, (2004).
    [6]黃文成, "脊椎脊髓外傷之外科處理," 中華民國神經放射線醫學會,第39期會刊, pp. 17-19,(2008).
    [7]Benli İ., Acaroğlu E., Akalin S., Kiş M., Duman E., and Ün A., "Anterior radical debridement and anterior instrumentation in tuberculosis spondylitis," European Spine Journal, vol. 12, No. 2, pp. 224-234, (2003).
    [8]Kotani Y., Cunningham B. W., Parker L. M., Kanayama M., and McAfee P. C., "Static and Fatigue Biomechanical Properties of Anterior Thoracolumbar Instrumentation Systems: A Synthetic Testing Model," Spine, vol. 24, No. 14, pp. 1406-1413, (1999).
    [9]Reinhold M., Schwieger K., Goldhahn J., Linke B., Knop C., and Blauth M., "Influence of Screw Positioning in a New Anterior Spine Fixator on Implant Loosening in Osteoporotic Vertebrae," Spine, vol. 31, No. 4, pp. 406-413, (2006).
    [10]Rodríguez-Olaverri J. C., Hasharoni A., DeWal H., Nuzzo R. M., Kummer F. J., and Errico T. J., "The effect of end screw orientation on the stability of anterior instrumentation in cyclic lateral bending," The Spine Journal, vol. 5, No. 5, pp. 554-557, (2005).
    [11]張丙龍、林齊宣,解剖學:原理與實用,合記圖書出版社,台北市,(1995)。
    [12]彭英毅,解剖生理學,藝軒圖書有限公司,台北市,(1992)。
    [13]Liljenqvist U., Bullmann V., Schulte T., Hackenberg L., and Halm H., "Anterior dual rod instrumentation in idiopathic thoracic scoliosis," European Spine Journal, vol. 15, No. 7, pp. 1118-1127, (2006).
    [14]Maruyama T. and Takeshita K., "Surgical treatment of scoliosis: a review of techniques currently applied," Scoliosis, vol. 3, No. 1, pp. 1-6, (2008).
    [15]An H. S., Lim T. H., You J. W., Hong J. H., Eck J., and McGrady L., "Biomechanical evaluation of anterior thoracolumbar spinal instrumentation," Spine, vol. 20, No. 18, pp. 1979-1983, (1995).
    [16]Hitchon P. W., Goel V. K., Rogge T. N., Torner J. C., Dooris A. P., Drake J. S., Yang S. J., and Totoribe K., "In vitro biomechanical analysis of three anterior thoracolumbar implants," Journal of Neurosurgery: Spine, vol. 93, No. 2, pp. 252-258, (2000).
    [17]Haher T. R., Yeung A. W., Ottaviano D. M., Merola A. A., and Caruso S. A., "The inverse effects of load transfer and load sharing on axial compressive stiffness," The Spine Journal, vol. 1, No. 5, pp. 324-329, (2001).
    [18]Hitchon P. W., Brenton M. D., Serhan H., Goel V. K., and Torner J. C., "In Vitro Biomechanical Studies of an Anterior Thoracolumbar Implant," Journal of Spinal Disorders & Techniques, vol. 15, No. 5, pp. 350-354, (2002).
    [19]Faro F. D., White K. K., Ahn J. S., Oka R. S., Mahar A. T., Bawa M., Farnsworth C. L., Garfin S. R., and Newton P. O., "Biomechanical Analysis of Anterior Instrumentation for Lumbar Corpectomy," Spine, vol. 28, No. 22, pp. 468-471, (2003).
    [20]Brodke D. S., Gollogly S., Bachus K. N., Alexander Mohr R., and Nguyen B.-K. N., "Anterior Thoracolumbar Instrumentation: Stiffness and Load Sharing Characteristics of Plate and Rod Systems," Spine, vol. 28, No. 16, pp. 1794-1801, (2003).
    [21]Zhu J. W., Dong Q. R., Zhu J. Q., Cheng H. B., and Wang Y. J., "Biomechanical evaluations of three anterior thoracolumbar internal fixation devices," Chinese Journal of Clinical Rehabilitation, vol. 9, No. 46, pp. 151-153, (2005).
    [22]Brodke D. S., Klimo P., Jr., Bachus K. N., Braun J. T., and Dailey A. T., "Anterior Cervical Fixation: Analysis of Load-Sharing and Stability with Use of Static and Dynamic Plates," J Bone Joint Surg Am, vol. 88, No. 7, pp. 1566-1573, July 1 (2006).
    [23]Johnson W. M., Nichols T. A., Jethwani D., and Guiot B. H., "In vitro biomechanical comparison of an anterior and anterolateral lumbar plate with posterior fixation following single-level anterior lumbar interbody fusion," Journal of Neurosurgery: Spine, vol. 7, No. 3, pp. 332-335, (2007).
    [24]Disch A. C., Knop C., Schaser K. D., Blauth M., and Schmoelz W., "Angular Stable Anterior Plating Following Thoracolumbar Corpectomy Reveals Superior Segmental Stability Compared to Conventional Polyaxial Plate Fixation," Spine, vol. 33, No. 13, pp. 1429-1437, (2008).
    [25]Huang T.-J., Hsu R. W.-W., Tai C.-L., and Chen W.-P., "A biomechanical analysis of triangulation of anterior vertebral double-screw fixation," Clinical Biomechanics, vol. 18, No. 6, pp. S40-S45, (2003).
    [26]Schultheiss M., Claes L., Wilke H. J., Kinzl L., and Hartwig E., "Enhanced primary stability through additional cementable cannulated rescue screw for anterior thoracolumbar plate application," Journal of Neurosurgery, vol. 98, No. 1, pp. 50-55, (2003).
    [27]DiPaola C. P., Jacobson J. A., Awad H., Conrad B. P., and Rechtine Ii G. R., "Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP," The Spine Journal, vol. 8, No. 5, pp. 717-722, (2008).
    [28]Zehnder S., Bledsoe J. G., and Puryear A., "The effects of screw orientation in severely osteoporotic bone: A comparison with locked plating," Clinical Biomechanics, vol. 24, No. 7, pp. 589-594, (2009).
    [29]Sukthankar A., Nerlich A. G., and Paesold G., Spinal Disorders Fundamentals of Diagnosis and Treatment, Springer Berlin Heidelberg,(2008).
    [30]許文賢,人工椎體支撐器之生物力學分析與機械測試,國立台灣科技大學,博士論文,台北(2009)。
    [31]徐慶琪,骨螺絲之結構設計與生物力學分析,國立台灣科技大學,博士論文,台北(2005)。
    [32]康淵、陳信吉,ANSYS入門,全華科技圖書有限公司,台北市,(2006)。
    [33]蔡國忠,ANSYS Workbench有限元素分析及工程應用,加樺國際圖書有限公司,臺北縣,(2008)。
    [34]劉晉奇,電腦輔助工程分析:ANSYS速學,五南圖書有限公司,台北市,(2009)。
    [35]丁志華、戴寶通, "田口實驗計畫法簡介(Ι)," 毫微米通訊, vol. 8, No. 3, pp. 7-11, (2001).
    [36]吳復強,產品穩健設計:田口方法之原理與應用,全威圖書有限公司,台北縣,(2005)。
    [37]DiPaola C. P., Jacobson J. A., Awad H., Conrad B. P., and Rechtine G. R. I., "Screw Pull-out Force is Dependent on Screw Orientation in an Anterior Cervical Plate Construct," Journal of Spinal Disorders & Techniques, vol. 20, No. 5, pp. 369-373, (2007).
    [38]Benzel E. C., Biomechanics of spine Stablilzation, American Association of Neurological Surgeons, Illinois, (2001).

    QR CODE