簡易檢索 / 詳目顯示

研究生: 孫嘉呈
Jia-Cheng Sun
論文名稱: 以田口方法對微球刀加工參數進行最佳化研究
Study on the Optimization of Micro Ball-End Milling Parameters by Taguchi Method
指導教授: 鍾俊輝
Chun-Hui Chung
口試委員: 林原慶
Yuan-Ching Lin
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 97
中文關鍵詞: 表面粗糙度刀具磨耗微切削主軸角度
外文關鍵詞: surface roughness, tool wear, micro-cutting, spindle angle
相關次數: 點閱:506下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代機械製造的環節當中,微切削加工是近來關鍵的重要加工技術,它是一種快速且低成本的微小零件機械加工,隨著微機電系統、微機械的多樣化發展及微小元件的需求,微切削成為不可或缺的角色; 鋁材具備輕量、高強度、耐蝕及美觀等優異性能,因此,被廣泛應用於運輸工具,因為有著大量的需求,鋁合金加工成為金屬加工不可或缺的一環;鈦是20世紀50年代發展起來的一種重要的結構金屬,鈦合金因具有強度高、耐蝕性好、耐熱性高等特點而被廣泛用於各個領域,但由於鈦材料的各種機械性質,使其加工困難,加工成本亦將相對提高。
    切削加工作業之設置,常依賴實務經驗作切削參數之設定,以優化切削結果。但依經驗選擇參數,通常較為主觀,且容易造成刀具及機器損傷;本實驗研究目的是探討微型球刀對於鋁合金及鈦合金進行切削,挑選切削方向、主軸轉速、切深、主軸角度、切削進給率這五項將會影響切削結果的參數,利用參數調整來優化表面粗糙度及刀具磨耗,本實驗將利用田口方法進行參數配對,在參數變化後進行實驗,試圖找出最佳切削結果的參數組合,利用結果分析了解各個參數的重要性,並找出使結果較為有利的趨勢,在最終實驗結果顯示,刀具偏擺角度將影響著微切削的表面粗糙度,偏擺角度與切削方向相同且偏擺20度將得到較佳表面粗糙度;而挑選與刀具傾斜方向垂直的切削方向將能優化刀具磨耗,切削力中的結果也顯示,穩定且較小的切削力將可以使產品獲得優良的表面粗糙度。


    Micro-cutting plays an important role in advanced manufacturing because of the required tiny components. As a result, there is need for MEMS to be more functional, smaller and smarter. Aluminum is commonly used all over the world because it is much lighter, easy to machine and has good appearance. In 1950, titanium was discovered which has high strength, corrosion and heat resistance, but it is difficult and high cost to machine. Previously cutting parameter optimization were based on experience of machinist. The optimization based on machinist experience is not a scientific skill, so it resulted in tool and machine damage.
    This study investigate cutting parameters using micro ball-end mill on aluminum and titanium. The factors considered includes cutting direction, spindle speed, depth of cut, spindle angle and feed rate. The Taguchi method was used to analyze and find the optimum cutting parameters to achieve minimum tool wear and surface roughness. The experimental results show that spindle angle has great effects on surface roughness and tool wear is highly depended on cutting direction. We can achieve good surface roughness by using constant and small cutting force.

    目錄 摘要 I Abtract II 致謝 III 目錄 IV 圖索引 VII 表索引 X 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 3 第2章 文獻回顧 4 2.1 鋁合金 4 2.2 鈦合金 4 2.3 微切削 11 2.4 刀具磨耗 13 2.5 切削力 15 2.6 表面粗糙度 17 2.7 五軸加工 18 第3章 實驗規劃與設備介紹 20 3.1 實驗目的與規劃 20 3.2 田口方法基本介紹 22 3.2.1 田口方法的設計 23 3.2.2 田口參數設計 23 3.2.3 直交陣列表 24 3.3實驗設備 27 3.3.1 切削設備 27 3.3.2 切削刀具 29 3.3.3 量測儀器 29 3.4實驗材料 31 3.4.1 鈦合金 31 3.4.2 鋁合金 33 3.5實驗參數設定 33 3.5.1 鋁合金 33 3.5.2 鈦合金 36 3.6切削方法 41 3.6.1 鋁合金 41 3.6.1 鈦合金 41 3.7量測方法 41 3.7.1 表面粗糙度 41 3.7.2 刀具磨耗 42 3.7.3 切削力 42 第4章 實驗結果與討論 43 4.1 鋁合金實驗結果與分析 44 4.1.1 表面粗糙度 44 4.1.2 刀具磨耗 48 4.1.3 切削力 53 4.2 鈦合金實驗結果與分析 57 4.2.1 表面粗糙度 57 4.2.2 刀具磨耗 63 4.2.3 切削力 69 4.3綜合討論 72 4.3.1 表面粗糙度 72 4.3.2 刀具磨耗 72 4.3.3 切削力 72 第5章 結論與未來展望 79 5.1 結論 79 5.2未來展望 80 圖索引 圖2.1切削示意圖 6 圖2.2刀具移除材料示意圖 8 圖2.3切削時造成切屑變形 9 圖2.4切削切屑接觸刀具長度 10 圖2.5切削能趨勢變化圖 12 圖2.6 ISO8688規定刀具磨耗寬度位置 13 圖2.7刀具磨耗曲線 14 圖3.1實驗流程圖 21 圖3.2 CNC五軸切削中心機 28 圖3.3實驗用刀具規格圖 29 圖3.4測力機架設於床台 30 圖3.5工件架設於床台上 30 圖3.6動力計力量擷取訊號 31 圖3.7 Ti-6AL-4V 500X 32 圖3.8 Ti-6AL-4V 1000X 32 圖3.9刀具偏擺角度示意圖 34 圖3.10擺頭式五軸加工機切削示意圖 37 圖3.11 X軸向切削 38 圖3.12 Y軸向切削 38 圖3.13刀具偏擺角度 39 圖3.14表面粗度儀量測工件 41 圖4.1實驗前塊材 43 圖4.2實驗後塊材 43 圖4.3鋁合金粗糙度 45 圖4.4鋁合金表面粗糙度因子反應圖 46 圖4.5鋁合金表面粗糙度訊號雜訊比圖 47 圖4.6鋁合金刀具磨耗狀況 49 圖4.7鋁合金刀具磨耗值 49 圖4.8鋁合金刀具磨耗因子反應圖 51 圖4.9鋁合金刀具磨耗訊號雜訊比圖 52 圖4.10三方向切削力變化 53 圖4.11鋁合金各組實驗切削力 56 圖4.12鈦合金粗糙度 59 圖4.13鈦合金表面粗糙度因子反應圖 61 圖4.14鈦合金表面粗糙度訊號雜訊比圖 62 圖4.15鈦合金刀具磨耗狀況 64 圖4.16鈦合金刀具磨耗值 65 圖4.17鈦合金刀具磨耗因子反應圖 67 圖4.18鈦合金刀具磨耗訊號雜訊比圖 68 圖4.19鈦合金各組實驗切削力 70 圖4.20球型銑刀示意圖 73 圖4.21球型銑刀切削示意圖 73 圖4.22球型銑刀X方向進刀示意圖 74 圖4.23球型銑刀Y方向進刀示意圖 74 圖4.24鋁合金表面粗糙度與切削力折線圖 76 圖4.25鋁合金表面粗糙度最佳參數實驗切削力 76 圖4.26鋁合金刀具磨耗與切削力折線圖 76 圖4.27鈦合金表面粗糙度與切削力折線圖 77 圖4.28鈦合金表面粗糙度最佳參數實驗切削力 77 圖4.29鈦合金刀具磨耗與切削力折線圖 78 表索引 表3.1干擾因子表 24 表3.2 L18的直交表之2個水準1因子與3水準7因子 25 表3.3 3LEVEL直交表參數挑選準則 26 表3.4 L18的直交表之2個水準1因子與3水準4因子 26 表3.5 CNC五軸切削中心機規格 28 表3.6硬度結果 32 表3.7 L9(3^4)實驗直交表 33 表3.8鋁合金參數設計表 35 表3.9鋁合金L9田口實驗組合 35 表3.10 L18((^1*3^7)實驗直交表 36 表3.11鈦合金參數設計表 39 表3.12鈦合金L18田口實驗組合 40 表4.1鋁合金粗糙度 44 表4.2鋁合金表面粗糙度ANOVA分析結果 45 表4.3鋁合金表面粗糙度ANOVA分析結果 46 表4.4鋁合金最佳實驗組合表面粗糙度量測結果 48 表4.5鋁合金刀具磨耗 49 表4.6鋁合金刀具磨耗ANOVA分析結果 50 表4.7鋁合金刀具磨耗ANOVA分析結果 51 表4.8鋁合金刀具磨耗最佳組合量測結果 53 表4.9頻率響應圖 55 表4.10鋁合金切削力平均值 57 表4.11鈦合金粗糙度 58 表4.12鈦合金表面粗糙度ANOVA分析結果 60 表4.13鈦合金表面粗糙度ANOVA分析結果 61 表4.14鈦合金實驗最佳組合表面粗糙度量測結果 63 表4.15鈦合金刀具磨耗 64 表4.16鈦合金刀具磨耗ANOVA分析結果 65 表4.17鈦合金刀具磨耗ANOVA分析結果 66 表4.18鈦合金刀具磨耗最佳組合量測結果 69 表4.19鈦合金切削力平均值 71

    參考文獻
    [1] A. Mouritz, 2012, Introduction to Aeospace Materials, 1, pp.1-14.
    [2] E.O. Ezugwu, Z.M. Wang, 1997, ”Titanium alloy and their machinability-a review,” Journal of Materials Processing Technology, 68, pp.262-247
    [3] V. A. Joshi , 2006, “Titanium alloys: an atlas of structures and fracture features,” CRC Press, pp.248–382.
    [4] 洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊 第21卷 第1期,中鋼公
    司新材料研究發展處,高雄,台灣,2013。
    [5] X. Yang , C. R. Liu, 1999, ”Machining titanium and its alloys,” Machining Science and Technology, pp.107-139.
    [6] L.N. Lopez, J. Perez, J. I. Llorente, J.A. Sanchez,2000, ” Advanced cutting conditions for the milling of aeronautical alloys,” Journal of Materials Processing Technology ,100, pp.1-11.
    [7] A. Pramanik, 2014, “The International Journal of Advanced Manufacturing Technology”, pp. 919–928.
    [8] T. Masuzawa , H. K. Tonshoff , 1997, ”Three-dimensional micromachining by machine tools,” CIRP Annals – Manufacturing Technology, 46(2), pp.621–628.
    [9] D. A. Lucca, Y. W. Seo, 1993, “Effect of Tool Edge Geometry on Energy Dissipation in Ultra precision Machining,” Received on January 13, pp.83-86.
    [10] J. Chae, S. S. Park, T. Freiheit, 2006, ”Investigation of micro-cutting operations,” International Journal of Machine Tools & Manufacture ,46, pp.313–332
    [11] C. J. Kim, M. Bono, J. Ni, 2002, ”Experimental Analysis of Chip Formation in Micro-Milling,” Proceedings of the NAMRI/SME, pp.1-8.
    [12] S. Shimada, N. Ikawa, H. Tanak, G. Ohmori, J. Uchikoshi, H. Yoshinaga, 1993, “Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation,” CIRP Annals - Manufacturing Technology, 42/1, pp.91-94.
    [13] Z. J. Yuan, M. Zhou, S. Dong, 1996, ”Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining,” Journal of Materials Processing Technology, 62/4, pp.327-330.
    [14] H. Weule, V. Huntrup, H. Tritschler, 2001,” Micro Cutting of Steel to Meet New Requirements in Miniaturization, ”CIRP Annals, 50/1, pp.61-64.
    [15] J. X. Deng, Y. S. Li, W. L. Song, 2008, ” Diffusion wear in dry cutting of Ti–6Al–4V with WC/Co carbide tools,” Wear, 265, pp.1776–1783.
    [16] V. Krishnaraj, S .Samsudeensadham, R. Sindhumathi, P Kuppan, 2014, ” A study on high speed end milling of titanium alloy,” Procedia Engineering, 97 , pp.251 – 257
    [17] R. A. R. Rashid, S. Sun, G. Wang, M. S. Dargusch, 2012, ” An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy,” International Journal of Machine Tools & Manufacture , 63, pp.58–69.
    [18] K. A. Venugopal, S. Paul, A. B. Chattopadhyay, 2007, ” Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling,” Wear, 262, pp.1071–1078.
    [19] J. A. Ghani, C.H.C. Haron, S. H. Hamdan, A. Y. M. Said, S. H. Tomadi, 2013, ”Failure mode analysis of carbide cutting tools used for machining titanium alloy,” Ceramics International , 39, pp.4449–4456.
    [20] E. O. Ezugwu, R. B. Da Silva, J. Bonney, A. R. Machado, 2005, ” Evaluation of the performance of CBN tools when turning Ti–6Al–4Valloy with high pressure coolant supplies,” International Journal of Machine Tools & Manufacture, 45, pp.1009–1014.
    [21] S. M. Afazov, D. Zdebski, S. M. Ratchev, J. Segal, S. Liu ,2013,” Effects of micro-milling conditions on the cutting forces and process stability,” Journal of Materials Processing Technology, 213, pp.671– 684.
    [22] S. Sun, M. Brandt, M. S. Dargusch, 2009, ” Characteristics of cutting forces and chip formation in machining of titanium alloys,” International Journal of Machine Tools & Manufacture, 49, pp.561–568.
    [23] S. Sun, M. Brandt, S. Palanisamy, M. S. Dargusch ,2015,”Effect of cryogenic compressed air on the evolution of cutting force and tool wear during machining of Ti–6Al–4V alloy,” Journal of Materials Processing Technology, 221, pp.243–254
    [24] S. Vijay, V. Krishnaraj, 2013, ”Machining Parameters Optimization in End Milling of Ti-6Al-4V,” Procedia Engineering, 64, pp.1079 – 1088.
    [25] N. Fang, Q. Wu, 2009, ” A comparative study of the cutting forces in high speed machining of Ti–6Al–4Vand Inconel 718 with a round cutting edge tool,” Journal of Materials Processing Technology, 209, pp.4385–4389.
    [26] M. H. Ali, B. A. Khidhir, M. N. M. Ansari, B. Mohamed, 2013, ” FEM to predict the
    effect of feed rate on surface roughness with cutting force during face milling of titanium alloy,” HBRC Journal, 9, pp.263–269.
    [27] A. Polishetty, M. Goldberg, G. Littlefair, M. Puttaraju, P. Patil, A. Kalra, 2014, ” A preliminary assessment of machinability of titanium alloy Ti-6Al-4V during thin wall machining using thochoidal milling,” Procedia Engineering, 97, pp.357 – 364.
    [28] Y. Dong, Z. Liu , 2015,” Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti–6Al–4V,” Int. Journal of Refractory Metals and Hard Materials, 51, pp.192–200.
    [29] D. S. C. Kishore, K. P. Rao, A. Ramesh, 2015, ” Optimization of machining parameters for improving cutting force and surface roughness in turning of Al6061-TiC in-situ metal matrix composites by using Taguchi method,” Materials Today: Proceedings , 2, pp.3075 – 3083.
    [30] S. Debnath, M. M. Reddy, Q. S. Yi, 2016, ” Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method,” Measurement , 78, pp.111–119.
    [31] S. R. F. Vidal, P. Mayuet, A. Rivero, J. Salguero, I. D. Sol, M. Marcos, 2015 ,” Analysis of the effects of tool wear on dry helical milling of Ti6Al4V alloy,” Procedia Engineering , 132 , pp.593 – 599.
    [32] A. Ginting, M. Nouari, 2009,” Surface integrity of dry machined titanium alloys,” International Journal of Machine Tools & Manufacture , 49, pp.325–332.
    [33] M. B. Mhamdi, M. Boujelbene, E. Bayraktar, A. Zghal, 2012, ”Surface Integrity of titanium Alloy Ti-6Al-4V in Ball end Milling, ” Physics Procedia , 25,pp.355 – 362.
    [34] X. Chen , J. Zhao & Y. Dong , S. Han & A. Li, D. Wang, 2013,”Effects of inclination angles on geometrical features of machined surface in five-axis milling,” International Journal of Advanced Manufacturing Technology ,65, pp.1721–1733.
    [35] E. Krebs , P. Kersting, 2014, “Improving the cutting conditions in the five-axis micromilling of hardened high-speed steel by applying a suitable tool inclination,” Procedia CIRP, 14, pp. 366 – 370.
    [36] ISO 8688-1, Tool life testing in milling-Face milling.
    [37] 馬寧元,李新中,刀具破損之探討,機電與工業管理文彙 第291期,金屬工業研究發展中心精微成形研發處,高雄,台灣,2007。

    無法下載圖示 全文公開日期 2019/08/23 (校內網路)
    全文公開日期 2026/08/23 (校外網路)
    全文公開日期 2026/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE