簡易檢索 / 詳目顯示

研究生: 陳柏毓
Bo-Yu Chen
論文名稱: 以自製拋光膠體工具進行機器人輔助拋光之定力控制研究
Research on the constant force control of robot assisted polishing using lab-made polishing rubber tools
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 郭俊良
Chun-Liang Kuo
陳亮光
Liang-Kuang Chen
林柏廷
Po-Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 135
中文關鍵詞: 六軸機械手臂自製內含氧化鋁粉之拋光球、柱STAVAX定力拋光表面粗糙度P控制器
外文關鍵詞: Constant force polishing system, Lab-made polishing rubber, P controller, Surface roughness, STAVAX, 6-axis robot
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為於六軸機械手臂上,以自製內含氧化鋁粉之拋光球、柱,配合線上拋光力控制程式的使用,以針對不同外形之STAVAX不銹模具鋼表面進行定力拋光,藉此改善工件之表面粗糙度。所設計、製造之拋光工具將連同力感測器裝設於機械手臂的末端,並透過定力控制程式的使用,使拋光力超過所設定之範圍時,經由P控制器計算出當前力量誤差值所對應的壓深補正量,以對後續的路徑點位進行修正,達到等接觸力拋光。
    經分析及測試後,本實驗所使用之擠光參數為:擠光力80 N、進給率2500 mm/min、間距0.03 mm;柱拋光參數為:磨料粒徑1 μm、轉速6,600 rpm、拋光力5 N、進給率0.6 mm/min;球拋光參數為:磨料粒徑0.5 μm、轉速7,500 rpm、拋光力1.5 N、進給率60 mm/min、間距0.01 mm。試件中的平面、小曲率曲面及大曲率曲面經擠光後,表面粗糙度分別可達Ra 0.063 μm、Ra 0.067 μm、Ra 0.077 μm,而以拋光柱對平面、小曲率曲面進行定力拋光後,分別可改善至Ra 0.030 μm及Ra 0.033 μm;以拋光球對大曲率曲面進行定力拋光後,則可改善至Ra 0.047 μm,且三項特徵之定力拋光結果均優於無定力拋光的Ra 0.043 μm、Ra 0.040 μm及Ra 0.063 μm。最後,本實驗將此精加工程序應用於收納盒蓋模仁之定力拋光,並記錄其拋光後之表面粗糙度及表面紋理。


    The purpose of this research is to develop a constant force polishing system using lab-made polishing rubber and a P controller, to improve the surface roughness of the STAVAX stainless mold steel on a 6-axis robot. The polishing tool and the force sensor are mounted on the robot, and the computer, the robot and the force sensor have been integrated for automated polishing controlled by a program written in C# language. The value of the polishing force and the position of the polishing tool are monitored by the developed program. When the polishing force is not within the target range, the correction of the position corresponding to the force error was calculated by the P controller, to correct the polishing path.
    After finishing the analysis and testing, the determined burnishing parameters were as follows: the burnishing force of 80 N, the feed rate of 2500 mm/min, the stepover of 0.03 mm. The parameters for the cylindrical polishing tools were as follows: the abrasive size of 1 μm, the spindle speed of 6,600 rpm, the polishing force of 5 N, the feed rate of 0.6 mm/min. The parameters for the ball polishing tools were as follows: the abrasive size of 0.5 μm, the spindle speed of 7,500 rpm, the polishing force of 1.5 N, the feed rate of 60 mm/min, the stepover of 0.01 mm. After burnishing, the surface roughness of the flat surface, the small curvature curved surface, and the large curvature curved surface of the specimen can be improved from Ra 0.237 μm, Ra 0.337 μm, and Ra 0.397 μm to Ra 0.063 μm, Ra 0.067 μm, and Ra 0.077 μm, respectively. After the flat surface and the small curvature curved surface have been polished by the cylindrical polishing tool with force control, the surface roughness can be improved from Ra 0.063 μm and Ra 0.067 μm to Ra 0.030 μm and Ra 0.033 μm, respectively, and the curved surface with large curvature polished by the polishing ball with force control can be improved from Ra 0.077 μm to Ra 0.047 μm. The surface roughness results of the three surface features polished with force control are all better than the ones without force control. After confirming the processing parameters and the control method by the specimen, the finishing procedure was applied to polish the mold of a storage box cover, and the surface roughness and surface texture have been investigated after polishing.

    摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 文獻回顧 1.3 研究方法與論文架構 第二章 相關理論介紹 2.1 擠光加工原理 2.1.1 擠光力 2.1.2 進給率 2.1.3 間距 2.1.4 擠光球材質 2.2 拋光加工原理 2.2.1 磨料 2.2.2 轉速 2.2.3 進給率 2.2.4 間距 2.2.5 壓深(拋光力) 2.3 表面粗糙度 2.3.1 表面粗糙度參數表示法 2.4 機器人運動學 2.4.1 齊次座標轉換矩陣 2.4.2 轉動矩陣 2.4.3 D-H表示法 2.4.4 順向運動學 2.4.5 逆向運動學 2.5 PID控制 第三章 定力控制方法及應用方式 3.1 定力控制方法 3.2 點位方向修正 3.3 定力控制之應用方式 第四章 實驗方法與程序 4.1 實驗方法 4.2 工件材料 4.3 工件規劃 4.3.1 平面、曲面組合試件 4.3.2 收納盒蓋模仁成品 4.4 實驗設備 4.4.1 三軸加工中心機 4.4.2 五軸加工中心機 4.4.3 六軸機械手臂 4.4.4 力量及力矩感測器 4.4.5 擠光工具 4.4.6 拋光工具 4.4.7 電動研磨機 4.4.8 自製內含氧化鋁粉之橡膠拋光球、柱 4.4.9 Z軸設定器與光電式尋邊器 4.4.10 表面粗糙度量測儀 4.4.11 工具顯微鏡 4.4.12 快速定位夾具 4.5 資訊系統 4.6 實驗規劃 第五章 實驗結果與分析 5.1 擠光參數制定 5.2 柱拋光參數制定 5.2.1 磨料粒徑 5.2.2 轉速 5.2.3 進給率 5.2.4 拋光力 5.2.5 間距 5.3 控制相關參數制定 5.3.1 平均力取樣個數 5.3.2 拋光力振盪範圍 5.3.3 控制器方法及參數之選用 5.4 平面、曲面組合試件之有、無定力拋光比較 5.4.1 拋光之前置加工 5.4.2 平面之有、無定力拋光比較 5.4.3 小曲率曲面之有、無定力拋光比較 5.4.4 大曲率曲面之有、無定力拋光比較 5.5 定力控制方法應用於收納盒蓋模仁拋光 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻 附錄(一) 試件表面粗糙度量測結果 附錄(二) STAVAX不銹模具鋼材料證明

    1. 陳茂全,“於CNC工具機進行自動球拋光之定力控制研究”,國立台灣科技大學機械工程學系碩士論文,2008年。
    2. Koji Shibuya, and Shunsuke Issiki, “Evaluation of Metallic Mold Surfaces Polished by an Industrial Robot with StickWhetstones,” Int. J. of Automation Technology, Vol. 8, No.2, 2014, pp. 253-263.
    3. 徐銘良,“於CNC工具機進行自動球拋光之定力控制研究”,國立台灣科技大學機械工程學系碩士論文,2015年。
    4. 丁肇力,“超音波球拋光製程作鏡面不鏽鋼之自動化表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2016年。
    5. Peng, Xu, Chi-Fai, Cheung, Bing, Li, Lai-Ting, Ho, and Ju-Fan, Zhang, “Kinematics analysis of a hybrid manipulator for computer controlled ultra-precision freeform polishing,” Robotics and Computer-Integrated Manufacturing, Vol. 44, 2017, pp. 44-56.
    6. 潘建男,“自製內含氧化鋁粉橡膠球作STAVAX不鏽模具鋼之自動化表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2018年。
    7. 洪詩函,“自製拋光球對STAVAX模具鋼應用於CNC車銑複合工具機表面精加工之研究”,國立台灣科技大學機械工程學系碩士論文,2018年。
    8. 鍾宏明,“於CNC工具機進行自製拋光球之定力控制拋光加工研究”,國立台灣科技大學機械工程學系碩士論文,2019年。
    9. 江忠穎,“自製拋光球對STAVAX模具鋼應用於六軸機械手臂之表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2019年。
    10. 楊雁宇,“於CNC工具機以自製拋光工具進行STAVAX模具用鋼之表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2020年。
    11. Adhithya Plato Sidharth Arunachalam, Sridhar Idapalapati, Sathyan Subbiah, and Yee Wei Lim, “A novel retractable stiffener-based disk-shaped active compliant polishing tool,” Journal of Manufacturing Processes, Vol. 51, 2020, pp. 83-94.
    12. Fusaomi Nagata, Tetsuo Hase, Zenku Haga, Masaaki Omoto, and Keigo Watanabe, “CAD/CAM-based position/force controller for a mold polishing robot,” Mechatronics, Vol. 17, 2007, pp. 207-216.
    13. Huapeng Du, Yuwen Sun, Deyang Feng, and Jinting Xu, “Automatic robotic polishing on titanium alloy parts with compliant force/position control,” Journal of Engineering Manufacture, Vol. 229, 2015, pp. 1-13.
    14. Fengjie Tian, Chong Lv, Zhenguo Li, and Guangbao Liu, “Modeling and control of robotic automatic polishing for curved surfaces,” CIRP Journal of Manufacturing Science and Technology, Vol. 14, 2016, pp. 55-64.
    15. Xiaohui Xie, and Lining Sun, “Force Control Based Robotic Grinding System And Application,” World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 2552-2555.
    16. Abd El Khalick Mohammad, Jie Hong, and Danwei Wang, “Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach,” Robotics and Computer–Integrated Manufacturing, Vol. 49, 2018, pp. 54-65.
    17. Chen Fan, Zhao Huan, Li Dingwei, Chen Lin, Tan Chao, and Ding Han, “Contact force control and vibration suppression in robotic polishing with a smart end effector,” Robotics and Computer Integrated Manufacturing, Vol. 57, 2019, pp. 391-403.
    18. Hsien-I Lin, and Vipul Dubey, “Design of an Adaptive Force Controlled Robotic Polishing System Using Adaptive Fuzzy-PID,” IAS 2018, AISC, Vol. 867, 2019, pp. 825-836.
    19. Chaowen Xiao, Qinghui Wang, Xuefeng Zhou, Zhihao Xu, Xiaoyan Lao, and Ying Chen, “Hybrid Force/Position Control Strategy for Electromagnetic based Robotic Polishing Systems,” Proceedings of the 38th Chinese Control Conference, 2019, pp. 7010-7015.
    20. XIANG WU, ZHI HUANG, YONGJIAN WAN, HAITAO LIU, and XIANG CHEN, “A Novel Force-Controlled Spherical Polishing Tool Combined With Self-Rotation and Co-Rotation Motion,” IEEE Access, Vol. 8, 2020, pp. 108191-108200.
    21. Kai He, Imran Mohsin, Zhao Wenliang, and Zheng Li, “Robotic Polishing of the Thin Plate Eyeglasses frame Under Effective Path Planning and Stable Force,” 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), 2020, pp. 540-543.
    22. 陳建樺,“塑膠模壓鑄用鋼之球擠光加工研究”,國立台灣科技大學機械工程學系碩士論文,2001年。
    23. N. H. Loh, and S. C. Tam, “Effects of ball burnishing parameters on surface finish - A literature survey and discussion,” Precision Engineering, Vol. 10, Issue 4, 1988, pp. 215-220.
    24. 邱泓翔,“以振動式球拋光製程作鏡面不銹鋼之自動化表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2006年。
    25. 李伯益,“撓性夾持機構應用在研磨與拋光之研究”,淡江大學機械工程學系碩士論文,1998年。
    26. 邱如德,“以球擠光與拋光製程對自由曲面模具之表面精加工之研究”,國立台灣科技大學機械工程學系碩士論文,2002年。
    27. 李冠宗,“潤滑學”,高立書局,1992年。
    28. 張郭益、許全守,“精密量測”,全華書局,2003年。
    29. 范光照,“精密量測”,高立書局,2000年。
    30. 蔡高岳,“機器人學”,課程講義,2018年。
    31. J. Denavit, and R.S. Hartenberg, “A Kinematic Notation for Lower-pair Mechanisms Based on Matrices,” ASME J. Appl. Mech., 1955, pp. 215-221.
    32. “FANUC Robot M-10iA 機構部操作說明書 Edition 04”,FANUC CORPORATION,2008年。
    33. 毛偉龍,“單元十七:直流馬達PID控制實驗(二)_PART 5:PID控制原理(一)”,DeltaMOOCx自動化系統設計與實務線上課程,2017年。
    34. “PID控制器”,維基百科。
    35. “ASSAB 瑞典優質鋼材”,台灣盛百股份有限公司,2003 年。
    36. 莊俊雄,“創新型內建荷重計擠光工具應用於工具鋼自動化表面精加工之研究”,國立台灣科技大學機械工程學系碩士論文,2007年。

    無法下載圖示 全文公開日期 2024/10/19 (校內網路)
    全文公開日期 2024/10/19 (校外網路)
    全文公開日期 2024/10/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE