簡易檢索 / 詳目顯示

研究生: 傅淑玫
Shu-mei Fu
論文名稱: 添加多壁奈米碳管於Sn-3.0Ag-0.5Cu無鉛銲料之性質研究
Multi-walled carbon nanotubes reinforced Sn-3.0Ag-0.5Cu lead-free solder composites
指導教授: 顏怡文
Yee-wen Yen
口試委員: 陳志銘
Chih-Ming Chen
吳子嘉
Tzu-Chia Wu
施劭儒
shao-ju.shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 多壁奈米碳管(MWCNTs)Sn-3.0Ag-0.5Cu (SAC)無鉛銲料複合銲料
外文關鍵詞: Multi-walled carbon nanotubes, Sn-3.0Ag-0.5Cu lead-free solder, composite solder
相關次數: 點閱:224下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銲料在電子構裝中作為基板與電子元件重要的連結材料,目前以Sn-Ag-Cu無鉛銲料最被廣泛使用。本研究目的在於添加0-0.07 wt%多壁奈米碳管於Sn-3.0Ag-0.5Cu錫膏中,藉以提升無鉛銲料的性質。對於所形成的複合銲料分別進行顯微結構觀察並與銅基材進行界面反應以及熱、電和潤濕性質的分析,探討碳管加入後對無鉛銲料性質的影響。
    在顯微結構中顯示,經過迴焊後碳管仍散佈於複合銲料中,且碳管添加量0.07 wt%時有糾結嚴重的現象。隨著碳管的添加量增加,介金屬相也產生變化。界面反應在100-200oC下進行5-30小時的時效處理,從150oC時效30小時開始,碳管添加量0-0.07 wt%的複合銲料與銅基材所形成的反應偶,其界面端的Cu6Sn5相形態皆會從扇貝狀轉變為層狀,並在Cu6Sn5與銅基材間生成了Cu3Sn相。而由於碳管的加入阻礙銲料與銅基材間原子的擴散,抑制了Cu6Sn5與Cu3Sn相生長。使在時效溫度增加與時間增長下,隨碳管添加量增加至0.05 wt%,其介金屬相生長速率都顯得越低,且需較高活化能才使介金屬相生長的現象。但在碳管添加量0.07 wt%時,銲料內部的碳管糾結嚴重,使得銲料與強化相間產生相分離,造成的複合銲料性質較不穩定,生長速率介於碳管添加量0與0.01wt%的生長速率之間。
    其他性質方面,液化溫度在碳管添加量增至0.05和0.07 wt%時,略為下降至1oC;電性質方面隨碳管的加入較無明顯的影響;潤濕性質則是在碳管添加量0.05 wt%時,潤濕角度從57.6o下降至52.5o,具有最佳潤濕效果。經過各項分析後,本研究的複合銲料系統以SAC-0.05MWCNTs的組成有最佳之性質。


    As is known, solders are essential to electronic industry. Recently, with the fast development of electronic products and the ever-stricter service requirement of the packaging industry, it is vital to enhance the property of solders, which act as interconnecting joints in electronic device.
    In this study, the composite solders were produced mechanically by intermixing 0-0.07 wt% multi-walled carbon nanotubes(MWCNTs) into Sn-3.0Ag-0.5Cu solder. The objective of this study is to investigate the effects of the addition of carbon nanotubes on composite solders’ microstructure, thermal property, electrical resistivity, wettability and interfacial reaction with copper plate.
    The microstructure of the composite solder shows that with the addition of MWCNTs, a larger number of Ag3Sn phases precipitates in the solder matrix while the Cu6Sn5 phases are retarded. Also, the grain morphology of both phases has somehow changed.
    Isothermal aging was performed at 100oC to 200 oC for 5 to 30 h. During the aging process, the morphology of Cu6Sn5 changed form scalloped-shaped type to layer type. Meanwhile, with the addition of MWCNTs, the growth rate of Cu6Sn5 and Cu3Sn phases is restrained, and more activation energy is required, compared to unreinforced solders. In particular, it is indicated in this study that, the addition of 0.05 wt% MWCNTs to the Sn-3.0Ag-0.5Cu solder has the optimum reliability.
    On the other hand, liquefacient temperature decreased slightly as the effect of doping MWCNTs. As for the electrical resistivity, the presence of MWCNTs did not degrade the electrical performance. The optimum wettability of the composite solder is SAC-0.05MWCNTs. Therefore, SAC-0.05MWCNTs composite solder may be a suitable substitute for SAC solder.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章、前言 1 第二章、文獻回顧 3 2-1無鉛銲料簡介 3 2-1.1無鉛銲料之發展 3 2-1.2本研究所使用之Sn-Ag-Cu無鉛銲料簡介 5 2-2奈米碳管簡介 9 2-2.1奈米碳管的起源 9 2-2.2奈米碳管性質 9 2-2.3奈米複合材料性質 10 2-3複合銲料相關研究 11 2-3.1顯微結構與界面反應 16 2-3.2熱性質 18 2-3.3電性質 19 2-3.4潤濕性質 24 2-3.5機械性質 26 第三章、實驗方法 31 3-1試樣製備 31 3-1.1複合銲料製備 31 3-1.2複合銲料合金與銅基材相連試件製備 31 3-2複合銲料性質分析 32 3-2.1金相與顯微結構觀察 32 3-2.2界面反應 33 3-2.3液化溫度量測 34 3-2.4電性質分析 35 3-2.5潤濕性質分析 37 第四章、結果與討論 40 4-1熱性質分析 40 4-2顯微結構與界面反應分析 42 4-2.1 270oC迴焊2分鐘相連試件顯微結構變化 42 4-2.2界面反應 50 4-3電性質分析 69 4-4潤濕性質分析 70 4-4.1潤濕性質量測與表面張力和潤濕角度的計算 70 4-4.2不同比例之複合銲錫對潤濕性的影響 72 第五章、結論 79 第六章、參考文獻 81

    [1] 黃新鉗,“IC構裝發展趨勢”,表面黏著技術,28 (1999) 10。
    [2] C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, ”Properties of lead-free solder alloys with rare earth element additions”, Mater. Sci. Eng. R, 44 (2004) 1-44.
    [3] H. Hao, Y. Shi, Z. Xia, Y. Lei, F. Guo, “Microstructure evolution of SnAgCuEr lead-free solders under high temperature aging”, J. Electron. Mater., 37 (2008) 2-8.
    [4] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello and C. A. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys”, J. Electron. Mater., 29 (2000) 1122-1136.
    [5] http://www.emath.pu.edu.tw/puam/7_Honor/celebrate/celebrate6/neon/group06/ch03/ch03_03.htm
    [6] S. M. L. Nai, M. Gupta and J. Wei, “Development of novel lead-free solder composites using carbon nanotube reinforcements”, Int. J. Nanosci., 4 (2005) 423-429.
    [7] S. M. L. Nai, J. Wei and M. Gupta, “Multi-walled carbon nanotubes reinforced lead-free solder composites”, SIMTech technical report, 9 (2008) 195-199.
    [8] S. M. L. Nai, J. Wei and M. Gupta, “Interfacial intermetallic growth and shear strength of lead-free composite solder joints”, J. Alloy. Compd., 473 (2009) 100-106.
    [9] S. M. L. Nai, J. Wei and M. Gupta, “Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder”, J. Electron. Mater., 37 (2008) 515-522.
    [10] 黃育智、楊青峰、陳信文,“軟銲”,科學發展期刊,416期 (2007)。
    [11] 吳信輝,“非反應添加合金元素對液態錫系銲料與銀基材介面反應之影響”,碩士論文,國立台北科技大學化學工程研究所,台北,(2010)。
    [12] European Parliament. Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment and on the restriction of the use of certain hazardous substances in electrical and electronic equipment. COM 2000;:347.
    [13] P. Biocca, “Global update on lead-free solders”, Surf. Mount Technol. 13 (1999) 64-67.
    [14] 魏弘堯,“在BGA製程中以銦作為UBM層對接點界面形態與機械性質之探討”,碩士論文,國立台灣科技大學材料科技研究所,台北,(2006)。
    [15] Soldertec European lead-free technology roadmap, 1 (2002) 1-26. http://www.lead-free.org
    [16] Iver E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications”, J. Mater. Sci.:Mater. Electron., 18 (2007) 55-76.
    [17] Sn-Ag-Cu system, calculated phase diagrams, National Institute of Standards and Technology.
    http://www.metallurgy.nist.gov/phase/solder/agcusn.html
    [18] M. Reid, J. Punch, M. Collins, C. Ryan, “Effect of Ag content on the microstructure of Sn-Ag-Cu based solder alloys”, Soldering & Surface Mount Technology, 20 (2008) 3-8.
    [19] D. A. Shnawah, M. F. M. Sabri and I. A. Badruddin, “A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products”, Microelectron. Reliab., 52(2012) 90-99.
    [20] N. Saunders and A. P. Miodownik, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1990).
    [21] I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park,Ohio (1987).
    [22] K. Nimmo, “Alloy selection and Marcel Dekker”, New York (2004).
    [23] M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Appl. Phys. Lett., 63 (1993) 15-17.
    [24] C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao,“Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni”, J. Electr. Mater., 31 (2002) 584-590.
    [25] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56-58.
    [26] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363 (1993) 603-605.
    [27] 韋進全、張先鋒、王昆林,“奈米碳管巨觀體-物理化學特性與應用”,五南圖書,台北,2009。
    [28] 朱屯、王福明、王習東,“奈米材料技術”,五南圖書,台北,2003。
    [29] 徐國財、張立德,“奈米複合材料”,五南圖書,台北,2004。
    [30] 周森,“複合材料-奈米•生物科技”,全威圖書,台北,2004。
    [31] 吳人潔,“複合材料”,新文京開發,台北,2004。
    [32] F. Guo, “Composite-lead free electronic solders”, J. Mater. Sci. Mater. Electron. 18 (2007) 129-145.
    [33] S. Y. Hwang, J. W. Lee and Z. H. Lee, “Microstructure of a lead-free composite solder produced by an in-situ process”, J. Electron. Mater., 31 (2002) 1304-1308.
    [34] D. C. Lin, T. S. Srivatsan, G. X. Wang and R. Kovacevic, “Microstructural development of a rapidly cooled eutectic Sn-3.5%Ag solder reinforced with copper powder”, Powder Technology, 166 (2006) 38-46.
    [35] S. Y. Chang, C. C. Jain, T. H. Chuang, L. P. Feng and L. C. Tsao, “Effect of addition of TiO2 nanoparticles on the microstructure, microhardness and interfacial reaction of Sn3.5AgXCu solder”, Mater. Des., 32 (2011) 4720-4727.
    [36] P. Babaghorbani, S. M. L. Nai and M. Gupta, “Development of lead-free Sn-3.5Ag/SnO2 nanocomposite solders”, J. Mater. Sci.: Mater. Electron., 20 (2009) 571-576.
    [37] P. Babaghorbani, S. M. L. Nai and M. Gupta, “Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders”, J. Alloy. Compd., 478 (2009) 458-461.
    [38] A. K. Gain, Y. C. Chan and W. K. C. Yung, “Effect of additions of ZrO2nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads”, Microelectron. Reliab., 51 (2011) 2306-2313.
    [39] A. K. Gain, T. Fouzder, Y. C. Chan, K. WincoandC.Yung, “Microstructure, kinetic analysis and hardness of Sn-Ag-Cu-1wt.% nano-ZrO2 composite solder on OSP-Cu pads”, J. Alloys. Compd., 509 (2011) 3319-3325.
    [40] L. C. Taso, “An investigation of microstructure and mechanical properties of novel Sn3.5Ag0.5Cu-XTiO2 composite solders as functions of alloy composition and cooling rate”, Mater. Sci. Eng. A, 529 (2011) 41-48.
    [41] L. C. Taso, C. P. Chu and S. F. Peng, “Study of interfacial reaction between Sn3.5Ag0.5Cu composite alloys and Cu substrate”, Microelectron. Eng., 88 (2011) 2964-2969.
    [42] L. C. Taso, “Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging”, J. Alloy. Compd., 509 (2011) 8441-8448.
    [43] T. H. Chuang, M. W. Wu, S.Y. Chang, S. F. Ping and L. C. Tsao, “Strengthening mechanism of nano-Al2O3 particles reinforced Sn3.5Ag0.5Cu lead-free solder”, J. Mater. Sci.: Mater. Electron., 22 (2011) 1021-1027.
    [44] S. Y. Chang, L. C. Tsao, M. W. Wu and C. W. Chen, “The morphology and kinetic evolution of intermetallic compounds at Sn–Ag–Cu solder/Cu and Sn–Ag–Cu-0.5Al2O3 composite solder/Cu interface during soldering reaction”, J. Mater. Sci.: Mater. Electron., 23 (2012) 100-107.
    [45] S. M. L. Nai, J. Wei and M. Gupta, “Influence of reinforcements on the electrical resistivity of novel Sn-Ag-Cu composite solder”, International Mechanical Engineering Congress Exposition (IMECE), (2007) 39-42.
    [46] Y. D. Han, H. Y. Jing, S. M. L. Nai, L. Y. Xu, C. M. Tan and J. Wei, “Indentation creep and hardness of a Sn-Ag-Cu solder reinforced with Ni-coated carbon nanotubes”, International nanoelectronics conference(INEC), (2010) 219-221.
    [47] S. M. L. Nai, Y. D. Han, H. Y. Jing and K. L. Zhang, “Enhancing the Properties of a Lead-free Solder with the Addition of Ni-coated Carbon Nanotubes”, International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), (2009) 540-543.
    [48] K. M. Kumar, V. Kripesh and A. A. O. Tay, “Sn-Ag-Cu lead-free composite solders for ultra-fine-pitch wafer-level packaging”, Electronic Components and Technology Conference, (2006) 237-243.
    [49] K. M. Kumar, V. Kripesh and A. A. O. Tay, “Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solder”, J. Alloy. Compd., 450 (2008) 229-237.
    [50] K. M. Kumar, V. Kripesh and A. A. O. Tay, “Influence of single-wall carbon nanotube addition on the microstructural and tensile properties of Sn-Pb solder alloy”, J. Alloy. Compd., 455 (2008) 148-158.
    [51] K. M. Kumar, V. Kripesh and A. A. O. Tay, “Properties of 63Sn-37Pb and Sn-3.8Ag-0.7Cu solders reinforced with single-wall carbon nanotubes”, Nanopackaging:nanotechnologies and electronics packaging, (2008) 415-440.
    [52] P. Liu, P. Yao and J. Liu, “Effect of SiC nanoparticle additions on microstructure and microhardness of Sn-Ag-Cu solder alloy”, J. Electron. Mater., 37 (2008) 874-879.
    [53] X. Wang, Y. C. Liu, C. Wei, H. X. Gao, P. Jiang and L. M. Yu, “Strengthening mechanism of SiC-particulate reinforced Sn-3.7Ag-0.9Zn lead-free solder”, J. Alloy. Compd., 480 (2009) 662-665.
    [54] Y. S. Shin, Y. K. Ko, J. K. Kim and S. Yoo, “SiC-nanoparticle dispersed composite solder bump fabricated by electroplating”, Surf. Rev. Lett., 17 (2010) 201-205.
    [55] J. Shen and Y. C. Chan, “Effect of ZrO2 nanoparticles on the mechanical properties of Sn-Zn solder joints on Au/Ni/Cu pads”, J. Alloy. Compd., 477 (2009) 552-559.
    [56] B. I. Noh, J. H. Choi, J. W. Yoon and S. B. Jung, “Effect of cerium content on wettability, microstructure and mechanical properties of Sn-Ag-Ce solder alloys”, J. Alloy. Compd., 499 (2010) 154-159.
    [57] A. Nadia and A. S. M. A. Haseeb, “Effect of addition of copper particles of different size to Sn-3.5Ag solder”, J. Mater. Sci.: Mater. Electron., 23 (2012) 86-93.
    [58] H. T. Lee and Y. H. Lee, “Adhesive strength and tensile fracture of Ni particles enhanced Sn-Ag composite solder joint”, Mater. Sci. Eng. A, 419 (2006) 172-180.
    [59] M. He, N. D. Leon and V. L. Acoff, “Effect of Bi on the microstructure and tensile behavior of Sn-3.7Ag solders”, Soldering & Surface Mount Technology, 22 (2010) 4-9.
    [60] B. An and C. M. L. Wu, “Evaluation of wettability of composite solder alloy reinforced with silver and copper particles”, International Conference on Electronic Packaging Technology (ICEPT), (2007) 1-6.
    [61] K. Bukat, M. Koscielski, J. Sitek, M. Jakubowska and A. Mlozniak, “Silver nanoparticles effect on the wettability of Sn-Ag-Cu solder pastes and solder joints microstructure on copper”, Soldering & Surface Mount Technology, 23 (2011) 150-160.
    [62] M. Koscielski, K. Bukat, M. Jakubowska and A. Mlozniak, “Application of silver nanoparticles to improve wettability of SnAgCu solder paste”, International Spring Seminar on Electronics Technology (ISSE), (2010) 473-477.
    [63] Q. Chen and G. Li, “Effect of dopants on wettability and microstructure evolution of lead-free solder joints”, International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), (2010) 314-318.
    [64] P. Liu, P. Yao and J. Liu, “Evolution of the interface and shear strength between SnAgCu-xNi solder and Cu substrate during isothermal aging at 150oC”, J. Alloy. Compd., 486 (2009) 474-479.
    [65] M. M. Arafat and A. S. M. A. Haseeb, “Interfacial reaction and dissolution behavior of Cu substrate in molten Sn-3.8Ag-0.7Cu -nano Mo composite solder”, Electronics Packaging Technology Conference (EPTC), (2009) 953-956.
    [66] M. M. Arafat, A. S. M. A. Haseeb and Mohd Rafie Johan, “Interfacial reaction and dissolution behavior of Cu substrate in molten Sn-3.8Ag-0.7Cu in the presence of Mo nanoparticles”, Soldering & Surface Mount Technology, 23 (2011) 140-149.
    [67] V. Sivasubramaniam, N. S. Bosco, J. J. Rusch, J. Cugnoni and J. Botsis, “Interfacial intermetallic growth and strength of composite lead-free solder alloy through isothermal aging”, J. Electron. Mater., 37 (2008) 1598-1604.
    [68] C. P. Peng, J. Shen, W. D. Xie, J. Chen, C. P. Wu and X. C. Wang, “Influence of minor Ag nano-particles additions on the microstructure of Sn30Bi0.5Cu solder reacted with a Cu substrate”, J. Mater. Sci.: Mater. Electron., 22 (2011) 797-806.
    [69] F. Tai, F. Guo, M. T. Han, Z. D. Xia, Y. P. Lei and Y. W. Shi, “Creep and thermomechanical fatigue properties of in situ Cu6Sn5 reinforced lead-free composite solder”, Mater. Sci. Eng. A, 527 (2010) 3335-3342.
    [70] L. Zhang, W. Tao, J. Liu, Y. Zhang, Z. Cheng, C. Andersson, Y. Gao and Q. Zhai, “Manufacture, microstructure and microhardness analysis of Sn-Bi lead-free solder reinforced with Sn-Ag-Cu nano-particles”, International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), (2008) 1-5.
    [71] J. Shen and Y. C. Chan, “Research advances in nano-composite solder”, Microelectron. Reliab., 49 (2009) 223-234.
    [72] W. Yang, L. E. Feltion and R. W. Messler, “The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints”, J. Electron. Mater., 24(1995) 1465-1472.
    [73] L. C. Taso, “Evolution of nano-Ag3Sn particle formation on Cu-Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering”, J. Alloys. Compd., 509 (2011) 2326-2333.
    [74] W. F. Wu, Y. Y. Lin, H. T. Young, “Quantitative reliability analysis of electronic packages in consideration of variability of model parameters”, Proceedings of seventh electronic packaging technology and conference (EPTC), Singapore, (2005) 625-630.
    [75] C. M. T. Law, C. M. L. Wu, D. Q. Yu, L. Wang and J. K. L. Lai, “Microstructure, solderability, and growth of intermetallic compounds of Sn-Ag-Cu-RE lead-free solder alloy”, J.Electron.Mater., 35 (2006) 89-93.
    [76] 劉國雄、劉晃忠、李勝隆、林樹均、葉均蔚,“工程材料科學”,全華科技圖書,台北,2006,328-329。
    [77] 龔吉合、潘德華、楊希文、傅承祖、施並裕、丁原傑,“材料科學導論-機械材料”,滄海書局,台中,182-183。
    [78] R. J. K. Wassink, “Solder in Electronics”, Electrochemical Publications Ltd., (1989) 300-370.
    [79] S. W. Chen, C. C. Lin and C. M. Chen, “Determination of Melting and Solidification Characteristics of Solders using Differential Scanning Calorimetry”, Metallurgical and Materials Transactions A, 29A (1998) 1965-1972.
    [80] Y. M. Kim, H. R. Roh, S. Kim and Y. H. Kim, “Kinetic of intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu solder and alloy substrates”, J. Electron. Mater., 39 (2010) 2504-2512.
    [81] F. J. Wang, F. Gao, X. Ma and Y. Y. Qian, “Depressing effect of 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging”, J. Electron. Mater., 35 (2006) 1818-1824.
    [82] H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic Sn Pb alloy and Cu accompanied by ripening”, Phys. Rev. B, 53 (1996) 16027-16034.
    [83] C. F. Tseng, K. J. Wang and J. G. Duh, “Interfacial reactions of Sn-3.0Ag-0.5Cu solder with Cu-Mn UBM during aging”, J. Electron. Mater., 39 (2010) 2522-2527.
    [84] J. M. Kim, M. H. Jeong, S. Yoo and Y. B. Park, “Effect of surface finishes ad current stressing on interfacial reaction characteristics of Sn-3.0Ag-0.5Cu solder bumps”, J. Electron. Mater., 41 (2012) 791-799.
    [85] B. A. Cook, I. E. Anderson, J. L. Harringa and R. L. Terpstra, “Effect of heat treatment on the electrical resistivity of near-eutectic Sn-Ag-Cu Pb-free solder alloys”, J. Electron. Mater., 31 (2002) 1190-1194.

    QR CODE