簡易檢索 / 詳目顯示

研究生: 魏泓威
Hong-wei Wei
論文名稱: 聚乙二胺樹枝狀高分子與多壁奈米碳管複合材料之酸鹼及空間隔離效應於電極表面修飾之探討
pH and site isolation effect on immobilization of PAMAM dendrimer/multi-wall carbon nanotube composite material at gold electrode for biosensor application
指導教授: 今榮東洋子
Toyoko Imae
蔡協致
Hsieh-chih Tsai
口試委員: 氏原真樹
Masaki Ujihara
朱義旭
Yi-hsu Ju
林析右
Shi-yow Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 56
中文關鍵詞: 空間隔離效應酸鹼效應樹枝狀高分子多壁奈米碳管生物感測器
外文關鍵詞: site isolation effect, PAMAM dendrimer, multi-wall carbon nanotube, pH effect, biosensor
相關次數: 點閱:282下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Dendrimer為高分枝狀巨分子結構,其表面具有高數量帶有官能基的枝鏈端,依合成方式可產生不同官能基,常被應用在生醫及材料上;奈米碳管因其優異的機械強度、導電特性與電子傳送能力,常用來做電子元件上的應用,特別是感測器。本實驗主要以聚乙烯二胺樹枝狀分子(polyamidoamine (PAMAM) dendrimer)及多壁奈米碳管(multi-walled carbon nanotube, MWCNT)來製備生物感測器,並經由熱重損失儀及紅外線光譜分析此複合材料之組成及鍵結後官能基,利用11-mercaptoundecanoic acid及β-mercapto¬ethylamine修飾拋棄式金電極片之表面,利用循環伏安電儀(cyclic voltammetry)並選用K3Fe(CN)6電解液分析複合材料之電化學特性。檢測實驗分析可分為兩部分: (1)第一部分使用dendrimer (G4)/MWCNT奈米複合材料修飾在金電極(gold electrode, AuE)上,將葡萄糖氧化(GOX)以靜電吸引力的方式吸附在dendrimer(G4)/MWCNT-AuE上,作為葡萄糖感測器;(2)第二部分利用dendrimer (G4.5)與抗體(Ab2)及過氧化酵素(HRP)所形成的生物聚合物,製備三明治型(Ab1/Ag/Ab2)的過氧化氫感測器。感測器主要以電化學式,即循環伏安法(CV)與計時安培法(CA)偵測電流訊號作為感測原理。
    第一部分主要討論PAMAM dendrimer (G4)在不同溶液pH環境下質子化過程對於葡萄糖感測之影響,其偵測靈敏度為0.375~37.500 μM。另外,雖然GOX在pH 4-7具最佳活性,本實驗發現當電極表面選用pH敏感性高分子時,需考慮質子之消耗會造成電化學上氧化還原反應之影響。第二部分討論巨樹枝狀分子PAMAM dendrimer (G4.5)與線性分子在感測穩定度及靈敏度上的差異,樹枝狀分子具有空間上效應(site isolation effect),當鍵結HRP時能具有較高活性及靈敏度。


    Polyamidoamine (PAMAM) dendrimers, highly branched dendritic macromolecules, were used to modify the surface of electrodes due to their good biocompatibility and adequate functional groups for the reagent fixation. Carbon nanotube-mounted biosensors have been developed for the detection because of the superior electrocatalytic performance of carbon nanotubes. A hybrid nanocomposite of multi-walled carbon nanotube (MWCNT) and polyamidoamine dendrimer (PAMAM) have been synthesized and mount on the disposable gold electrode. Compared with bare gold electrode, MWCNT/PAMAM modified electrode not only significant enhanced the redox peak current but also decreased the peak-to-peak separation in aqueous ferro-ferricyanide electrolyte, suggesting that modified electrode can remarkably improve the sensitivity of sensor.
    In this work, we prepare two kind of sensors: (1) Glucose biosensor: the glucose oxidase (GOX) was further immobilized on the MWCNT/PAMAM modified electrode through the electrostatic interaction. (2) Hydrogen peroxide biosensor: the horseradish peroxidase (HRP), PAMAM dendrimer(G4.5) and interleukin-6(IL-6) antibody were synthesized as biocomposite, then modified on the disposal electrode through Antibody 1/Antigen/Antibody 2(sandwich type) interaction.
    The aim of first work(glucose biosensor) is to derive the surface and diffusion control factors contributed by protons on the redox of glucose oxidase(GOX), showing how a proton involve in both pH-dependent dendrimer modified electrode and electron transfer reaction of GOX. In second work(hydrogen peroxide biosensor), because of the site isolation effect, G4.5 dendrimer-based H2O2 biosensor provides space for enzyme reaction and shows high sensitivity for detection of H2O2.

    摘要…………………………………………………………………Ⅰ Abstract…………………………………………………………Ⅱ 誌謝……………………………………………………………Ⅲ 目錄…………………………………………………………Ⅳ 圖目錄…………………………………………………………Ⅷ 第一章、 緒論………………………………………………1 1.1 研究動機與目的………………………………1 第二章、 理論基礎與文獻回顧……………………………2 2.1 酵素的簡介…………………………………………2 2.1.1 酵素的特性………………………………………………2 2.1.2 酵素的單位………………………………………………2 2.1.3 酵素的分類………………………………………………2 2.1.4 酵素的特異性……………………………………………3 2.1.5 酵素反應步驟……………………………………………3 2.1.6 酵素之固定化……………………………………………3 2.2 生物分子簡介………………………………………………4 2.2.1 葡萄糖氧化 (Glucose oxidase, GOX)………4 2.2.2 辣根過氧化物 (Horseradish peroxidase, HRP)…5 2.2.3 介白素-6 (Interleukin-6, IL-6)…………………5 2.3 等電點 (pI) ………………………………………………5 2.4 生物感測器的發展…………………………………………6 2.5 電化學分析法………………………………………………8 2.5.1三極式電化學系統………………………………………8 2.5.2 循環伏安法 (CV) ………………………………………9 2.5.3 計時安培法 (CA) ……………………………………11 2.6 掃描速率效應…………………………………………12 2.7 質子與電子之轉移……………………………………13 2.8 奈米材料修飾電極……………………………………14 2.8.1 樹狀高分子修飾電極…………………………15 2.8.2奈米碳管修飾電極……………………………18 2.8.3樹狀高分子/奈米碳管複合材料修飾電極……21 第三章、 實驗方法與儀器設備……………………………23 3.1 實驗藥品與設備………………………………………23 3.1.1藥品………………………………………………23 3.1.2 實驗設備………………………………………24 3.1.3 網印電極片分析儀器…………………………25 3.2 材料合成………………………………………26 3.2.1 多壁奈米碳管官能基化…………………26 3.2.2 Dendrimer/MWCNT奈米複合材料合成………26 3.2.3 HRP-G4.5-Anti-IL6複合材料的合成……27 3.3 電極製備………………………………………27 3.3.1 葡萄糖感測器……………………………27 3.3.1.1自組裝分子膜(MUA)於AuE……………27 3.3.1.2 將DEN/MWCNT修飾於AuE……………28 3.3.1.3 將酵素GOX固定在電極上的DEN/MWCNT複合材料28 3.3.2 過氧化氫感測器…………………………………29 3.3.2.1 自組裝分子膜 (MEA)於AuE……………29 3.3.2.2將f-MWCNT修飾於AuE…………………29 3.3.2.3 將IL-6及Anti-IL6固定在電極上的f-MWCNT…29 3.3.2.4 將HRP-G4.5-Anti-IL6固定在電極上的IL-6抗原…30 3.4 溶液配製………………………………………………30 3.4.1 磷酸緩衝溶液配製………………………………30 3.4.2 赤血鹽K3Fe(CN)6溶液配製……………………30 3.4.3 葡萄糖溶液的配製及溶液pH值調整……………30 3.4.4 過氧化氫溶液的配製……………………………31 3.5 電化學分析裝置…………………………………………31 第四章、 結果與討論………………………………………32 4.1 GOX/DEN/MWCNT/SAM(MUA)/AuE之探討…………………32 4.1.1 傅立葉轉換紅外線光譜儀(FT-IR)之分析………32 4.1.2 熱重分析儀(TGA)之分析…………………………34 4.1.3 葡萄糖生物感測器電化學分析………………35 4.1.3.1 各修飾層電極的電化學分析………………35 4.1.3.2 葡萄糖檢測之電位訊號分析………………36 4.1.3.3 葡萄糖濃度與電流訊號分析………………41 4.1.3.4 溶液pH值對電極的影響分析……………………42 4.1.3.4.a GOX與Dendrimer表面電荷之探討…42 4.1.3.4.b 質子轉移之探討……………………44 4.1.3.5 溶液pH之掃描速度效應…………………………45 4.2 HRP-DEN-Anti-IL6/IL6/Anti-IL6/MWCNT/SAM(MEA)/AuE之探討…47 4.2.1傅立葉轉換紅外線光譜儀(FTIR)之分析……………47 4.2.1.a Anti-IL6/MWCNT紅外線吸收光譜圖分析……………47 4.2.1.b HRP-G4.5-AntiIL6紅外線吸收光譜圖分析…………48 4.2.2 穿透式顯微鏡(TEM)之分析……………………………50 4.2.3 過氧化氫感測器電化學分析…………………………51 4.2.3.1 各修飾層電極的電化學分析……………………51 4.2.3.2 過氧化氫感測之訊號分析…………………………52 4.2.3.3 不同分子的電流表現探討…………………53 4.2.3.3.a 循環伏安法(CV) …………………………53 4.2.3.3.b 計時安培法(CA) …………………………54 第五章、 結論…………………………………………55 參考文獻………………………………………………56

    1. 陳國誠,微生物酵素工程學,藝軒圖書出版社,(1989)。
    2. 劉英俊、汪金追,酵素工程,中央圖書出版社,(1987)。
    3. 呂鋒洲、林仁混,基礎酵素學,聯經出版社,(1991)。
    4. C.M. Wong, K.H. Wong, X.D. Chen, Glucose oxidase: natural occurrence, function, properties and industrial applications, Appl Microbiol Biotechnol (2008) 78:927–938
    5. S.B. Bankar, M.V. Bule, R.S. Singhal, L. Ananthanarayan, Glucose oxidase — An overview, Biotechnology Advances 27 (2009) 489–501
    6. Y. Songa, L. Wangb, C. Rena, G. Zhua, Z. Li, A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode, Sensors and Actuators B 114 (2006) 1001–1006
    7. B.S. Munge, C.E. Krause, R. Malhotra, V. Patel, J.S. Gutkind, J.F. Rusling, Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms, Electrochemistry Communications 11 (2009) 1009–1012
    8. M.K. Campbell, S.O. Farrell, biochemistry, Cengage Learning, 2007
    9. J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective, Biosensors and Bioelectronics 20 (2005) 2435–2453
    10. 胡啟章,電化學原理與方法,五南圖書出版社。
    11. D.A. Skoog, F.J. Holler, S.R. Crouch著,方嘉德譯,儀器分析,亞洲湯姆生國際出版社。
    12. P.T. Kissinger, W.R. Heineman , Cyclic voltammetry, J. Chem. Educ., 1983, 60 (9), 702
    13. S. Liu, H. Ju , Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode, Biosensors and Bioelectronics 19 (2003) 177-183
    14. H. Alemu1, B.M. Abegaz, M. Bezabih, Electrochemical behavior and voltammetric determination of geshoidin and its spectrophotometric and antioxidant properties in aqueous buffer solutions, Bull. Chem. Soc. Ethiop. 2007, 21(2), 189-204.
    15. C. Deng, J. Chenb, Z. Nieb, S. Si, A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode, Biosensors and Bioelectronics 26 (2010) 213–219
    16. G.K. Ahirwal, C.K. Mitra, Direct Electrochemistry of Horseradish Peroxidase-Gold Nanoparticles Conjugate, Sensors 2009, 9, 881-894
    17. K. Liang, W. Mu, M. Huang, Z. Yu, Q. Lai, Interdigitated Conductometric Immunosensor for Determination of Interleukin-6 in Humans Based on Dendrimer G4 and Colloidal Gold Modified Composite Film, Electroanalysis 18, 2006, No. 15, 1505 – 1510
    18. D.A. Tomalia, The dendriticstate, materialtoday Volume 8, Issue 3, March 2005, Pages 34–46
    19. B. Klajnert, M. Bryszewska, Dendrimers: Properties and applications, Acta Biochimica Polonica vol. 48 No. 1/2001 199-208
    20. A. Kulczynska, T. Frost, L.D. Margerum, Effect of PAMAM Dendrimer Size and pH on the Electrostatic Binding of Metal Complexes Using Cyclic Voltammetry, Macromolecules 2006, 39, 7372-7377
    21. N.C.B. Tana, L. Baloghb, S.F. Trevinoa, D.A. Tomaliab, J.S. Lind, A small angle scattering study of dendrimer–copper sulfide nanocomposites, Polymer 40 (1999) 2537–2545
    22. R. Esfand, D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications, research focus, DDT Vol. 6, No. 8 April 2001
    23. B. Klajnert, M. Bryszewska, Dendrimers: properties and applications, Acta Biochim Pol. 2001;48(1):199-208.
    24. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R, Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo, J Control Release. 2000,65(1-2),133-48.
    25. Snejdarkova M, Svobodova L, Gajdos V, Hianik T, Glucose biosensors based on dendrimer monolayers, J Mater Sci Mater Med. 2001;12(10-12):1079-82
    26. H.C. Yoon, H.S. Kim, Multilayered Assembly of Dendrimers with Enzymes on Gold: Thickness-Controlled Biosensing Interface, Anal. Chem. 2000, 72, 922-926
    27. L. Svobodova, M.S. nejdarkova, K. Tothb, R.E. Gyurcsanyib, T. Hianikc, Properties of mixed alkanethiol–dendrimer layers and their applications in biosensing, Bioelectrochemistry 63 (2004) 285– 289
    28. L. Tang, Y. Zhu, L. Xu, X. Yang, C. Li, Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes, Talanta 73 (2007) 438–443
    29. Y.L. Zeng, H.W. Huang, J.H. Jiang, M.N. Tian, C.X. Li , C.R. Tang, G.L. Shen, R.Q. Yu, Novel looped enzyme–polyamidoamine dendrimer nanohybrids used as biosensor matrix, analytica chimica acta 604 (2007) 170–176
    30. 成會明,奈米碳管,五南圖書出版社,(2004)
    31. 韋進全、張先鋒、王昆林,奈米碳管巨觀體物理化學特性與應用,五南圖書出版社,(2009)
    32. A.P. Periasamy, Y.J. Chang, S.M. Chen, Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode, Bioelectrochemistry 80 (2011) 114–120
    33. M.C. Tsai, Y.C. Tsai , Adsorption of glucose oxidase at platinum-multiwalled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor, Sensors and Actuators B 141 (2009) 592–598
    34. G. Liu, Y. Lin, Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes, Electrochemistry Communications 8 (2006) 251–256
    35. X.B. Yan, X.J. Chen, B.K. Tay, K.A. Khor, Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase, Electrochemistry Communications 9 (2007) 1269–1275
    36. X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes, Analytical Biochemistry 369 (2007) 71–79
    37. S.K. Vashist, D. Zheng, K. Al-Rubeaan , J.H.T. Luong , F.S. Sheu, Advances in carbon nanotube based electrochemical sensors for bioanalytical applications, Biotechnology Advances 29 (2011) 169–188
    38. A.P. Periasamy, Y.J. Chang, S.M. Chen, Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode, Bioelectrochemistry 80 (2011) 114–120
    39. F. Jia , C. Shan, F. Li , Li Niu, Carbon nanotube/gold nanoparticles/ polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing, Biosensors and Bioelectronics 24 (2008) 945–950
    40. M.C. Tsai, Y.C. Tsai, Adsorption of glucose oxidase at platinum-multiwalled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor, Sensors and Actuators B 141 (2009) 592–598
    41. W.J. Guan, Y. Li, Y.Q. Chen, X.B. Zhang, G.Q. Hu, Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes, Biosensors and Bioelectronics 21 (2005) 508–512
    42. L. Xu, Y. Zhu, L. Tang, X. Yang, C. Li, Biosensor Based on Self-Assembling Glucose Oxidase and Dendrimer-Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose Detection, Electroanalysis 19, 2007, No. 6, 717 – 722
    43. Y.L. Zeng , Y.F. Huang , J.H. Jiang , X.B. Zhang , C.R. Tang , G.L. Shen , R.Q. Yu , Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor, Electrochemistry Communications 9 (2007) 185–190
    44. T. A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Applied Surface Science 257 (2011) 7746–7751
    45. S.A. Ntim, Ornthida S.K., Frank A. Witzmann b., S. Mitra, Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions, Journal of Colloid and Interface Science 355 (2011) 383–388
    46. T.A. Saleh, V.K. Gupta, Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B, Journal of Colloid and Interface Science 362 (2011) 337–344
    47. P. Martis, V.S. Dilimon, J. Delhalle, Z. Mekhalif, Impact of surface functionalization of MWCNTs on electrogenerated Ni/MWCNT composites from aqueous solutions, Materials Chemistry and Physics 128 (2011) 133–140
    48. T.A. Saleha, S. Agarwalb, V.K. Guptaa, Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate, Applied Catalysis B: Environmental 106 (2011) 46– 53
    49. A. Solhya, B.F. Machadob, J. Beausoleila, Y. Kihnc, F. Goncalvesb, M.F.R. Pereirab, J.J.M. O rfaob, J.L. Figueiredob, J.L. Fariab, P. Serpa, MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective Hydrogenation, Carbon 46 (2008) 1194 –1207
    50. S.G. Hwanga, S.H. Ryua, S.R. Yuna, J.M. Kob, K.M. Kimc, K.S. Ryua, Behavior of NiO–MnO2/MWCNT composites for use in a supercapacitor, Materials Chemistry and Physics 130 (2011) 507– 512
    51. X. Lu and T. Imae, Size-Controlled in situ Synthesis of Metal Nanoparticles on Dendrimer-Modified Carbon Nanotubes, J. Phys. Chem. C 2007, 111, 2416-2420
    52. Y.L. Zenga, H.W. Huangb, J.H. Jianga, M.N. Tianb, C.X. Li , C.R. Tangb, G.L. Shena, R.Q. Yua, Novel looped enzyme–polyamidoamine dendrimer nanohybrids used as biosensor matrix, analytica chimica acta 604 (2007) 170–176
    53. A.N. Chakoli , J. Wanb, J.T. Feng , M. Amirian , J.H. Sui , W. Cai , Functionalization of multiwalled carbon nanotubes for reinforcing of poly(L-lactide-co-e-caprolactone) biodegradable copolymers, Applied Surface Science 256 (2009) 170–177
    54. I.D. Rosca, Fumio W.b., M. Uo , T. Akasaka , Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon 43 (2005) 3124–3131
    55. S.f. Liu, X.h. Li, Y.C. Li, Y.F. Li, J.R Li, L. Jiang, The influence of gold nanoparticle modified electrode on the structure of mercaptopropionic acid self-assembly monolayer, Electrochimica Acta 51 (2005) 427–431
    56. H. Yin , L. Cui, Q. Chen, W. Shi , S. Ai, L. Zhu, L. Lu, Amperometric determination of bisphenol A in milk using PAMAM–Fe3O4 modified glassy carbon electrode, Food Chemistry 125 (2011) 1097–1103
    57. W.J. Guana, Y. Li, Y.Q. Chen, X.B. Zhang, G.Q. Hu, Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes, Biosensors and Bioelectronics 21 (2005) 508–512
    58. X. Kang , Z. Mai , X. Zou , P. Cai, J. Mo, A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes, Analytical Biochemistry 369 (2007) 71–79
    59. M. Bisenberger, C. BrBuchle, N. Hampp, A triple-step potential waveform at enzyme multisensors with thick-film gold electrodes for detection of glucose and sucrose, Sensors and Actuators B 28 (1995) 181-189
    60. Y. Liu, V.S. Bryantsev, M.S. Diallo, W.A. Goddard III, PAMAM Dendrimers Undergo pH Responsive Conformational Changes without Swelling, J. AM. CHEM. SOC. 2009, 131, 2798–2799
    61. P.K. Maiti, T.C. agın, S.T. Lin, W.A. Goddard, Effect of Solvent and pH on the Structure of PAMAM Dendrimers, Macromolecules 2005, 38, 979-991
    62. W. Chen, D.A. Tomalia, J.L. Thomas, Unusual pH-Dependent Polarity Changes in PAMAM Dendrimers: Evidence for pH-Responsive Conformational Changes, Macromolecules 2000, 33, 9169-9172
    63. A. Kulczynska, T. Frost, L.D. Margerum, Effect of PAMAM Dendrimer Size and pH on the Electrostatic Binding of Metal Complexes Using Cyclic Voltammetry, Macromolecules 2006, 39, 7372-7377
    64. W.d. Tiana ,Y.Q. Ma, pH-responsive dendrimers interacting with lipid membranes, Soft Matter, 2012, 8, 2627–2632
    65. S. Raghu A R. G. Nirmal A J. Mathiyarasu A, Sheela Berchmans A K. L. N. Phani A V. Yegnaraman, Platinum–Dendrimer Nanocomposite Films on Gold Surfaces for Electrocatalysis, Catal Lett (2007) 119:40–49
    66. W. Al-Azzam, E.A. Pastrana, Y. Ferrer, Q. Huang, Reinhard S.S., K. Griebenow, Structure of Poly(Ethylene Glycol)-Modified Horseradish Peroxidase in Organic Solvents: Infrared Amide I Spectral Changes upon Protein Dehydration Are Largely Caused by Protein Structural Changes and Not by Water Removal Per Se, Biophysical Journal Volume 83 December 2002 3637–3651 3637
    67. Y. Maeda, M. Fujihara, I. Ikeda, Spectroscopic Study on Structure of Horseradish Peroxidase in Water and Dimethyl Sulfoxide Mixture, Biopolymers (Biospectroscopy), Vol. 67, 107–112 (2002)
    68. I.E. Holzbaur, A.M. English, A.A. Ismail, FTIR Study of the Thermal Denaturation of Horseradish and Cytochrome c Peroxidases in D2O, Biochemistry 1996, 35, 5488-5494
    69. W.J. Guan, Y. Lib, Y.Q. Chen, X.B. Zhang, G.Q. Hu, Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes, Biosensors and Bioelectronics 21 (2005) 508–512

    無法下載圖示 全文公開日期 2017/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE