簡易檢索 / 詳目顯示

研究生: 方家起
Jia-Ci Fang
論文名稱: 兩性型樹枝狀高分子/Polyimide製備規則貫穿孔薄膜應用於微米粒子分離
Preparation of amphiphilic dendrimer/Polyimide regular through-pore membrane for microparticles separation
指導教授: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
口試委員: 鄭如忠
Ru-Jong Jeng
王志逢
Chih-Feng Wang
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 兩性型dendron規則貫穿孔薄膜微過濾breath figures法
外文關鍵詞: amphiphilic dendron, membrane with regular and penetrating pore, microfiltration, breath figures method
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 規則貫穿孔洞薄膜具有極高產能及分離能力,此類薄膜開發可解決目前薄膜應用在微小粒子分離時產能與分離效能不足的問題,由過去研究得知在固體基材表面單獨使用高分子難以實現製作貫穿規則孔洞的薄膜。本研究利用兩性型dendron作為界面活性劑,兩性型dendron能集中官能基並加強分子間弱鍵結作用力,因此能提升分子的兩性行為,且由於dendron的生長方向,隨著分子量的提高不會造成分子鏈的糾纏,有利於自組裝行為的發生。兩性型dendron與商用級聚醯亞胺(polyimide, PI)進行混摻,利用三氯甲烷作為溶劑,製膜溶液均勻塗佈於濾紙表面,再利用Breath Figures法,在溶劑和水氣的交換過程,使水氣凝結在高分子表面且慢慢沉降,冷凝的水受dendron影響,排列成規則陣列,等溶劑揮發完後,濾紙基材表面塗佈層形成規則貫穿孔洞的薄膜。由SEM觀察,規則貫穿孔洞的高分子薄膜僅在濾紙表面形成,濾紙內纖維之間無Breath Figures孔洞結構,可以簡單地得到上層規則貫穿孔洞,下層為多孔基材的複合薄膜,本研究使用的方法無須將薄膜轉移至基材表面,減少了一道製膜程序。對dendron濃度5mg/ml的鑄膜液所製備複合薄膜進行純水通量和酵母水溶液過濾量測,純水通量高達1.18x105 LMH/bar,酵母水溶液過濾測試通量達1.74x104 LMH/bar,截留率可達92.85%以上,另外進行泥巴水過濾時,也成功將黃色混濁的泥巴水溶液變成乾淨澄清的水。規則貫穿孔洞薄膜亦呈現極佳的antifouling性能。


    Regular through-pore membranes have extremely high productivity and separation capabilities. The development of such membranes can solve the current problems of insufficient productivity and separation efficiency in particulate separation. Previous studies have shown that the use of polymer alone on solid substrates surface cannot form the perforated membrane. In this study, amphiphilic dendron is used as surfactant to concentrate functional groups and strengthen the weak bonding force between molecules, which is conducive to form regular and penetrating pores in the membrane. Amphiphlic dendron is mixed with commercial-grade polyimide (PI) with chloroform as the solvent, and then the solution is evenly coated on the surface of the filter paper substrate. Using breath figure method, the exchange process between water and solvent causes the water vapor to condense on the surface of the polymer solution slowly and arranged in a regular array. After the solvent had been evaporated, the coating layer on the surface of the filter paper will form a membrane with regular through-pores. The membrane was observed by SEM and revealed the regular through-pores only formed on the surface of the substrate. The preparation process used in this work eliminates the need of transferring the very thin and weak membrane to the substrate surface, which simplified the membrane-making process. For the composite membrane prepared with a 5mg/ml Dendron solution, pure water flux and yeast solution filtration tests were carried out. A pure water flux of 118826 LMH/bar was obtained, the yeast solution flux and rejection is 17410 LMH/bar and 92.85% respectively. The yellow turbid muddy water was also successfully turned into clear water. The antifouling performance of Regular through-pore membranes is also good.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 viii 一、緒論 1 1.1前言 1 1.1.1混濁水淨化 1 1.1.2濃縮 1 1.2薄膜分離技術 2 1.2.1微過濾 4 1.3多孔微濾膜製備方法 5 1.4Breath figures 方法 7 1.5規則樹枝狀高分子 11 1.5.1Dendron應用於規則多孔膜 12 1.6文獻回顧 16 1.7研究動機 25 二、實驗內容 26 2.1實驗藥品 26 2.2實驗器材與儀器 28 2.3實驗方法 28 2.3.1兩性型規則樹枝狀高分子polyurethane/malonamide dendron之合成 28 2.3.2溶液配置 30 2.3.2.1鑄膜液配置 30 2.3.2.2酵母水溶液配置 32 2.4PVA水溶液配置 32 2.5規則孔洞膜製備 32 2.5.1基材的製備 32 2.5.2多孔微濾膜製備 32 2.6純水通量測試 33 2.7酵母水溶液與泥巴水分離 33 2.8長時間操作 35 2.9實驗流程 36 三、結果與討論 37 3.1溶劑選擇 37 3.2Dendron/PI混摻比例對薄膜結構之影響 38 3.3基材改變對薄膜孔洞貫穿程度之影響 41 3.4鑄膜液中固成分濃度對複合膜結構的影響 43 3.4.1薄膜結構分析 43 3.4.2規則貫穿孔洞薄膜的純水通量與分離酵母水溶液效能 45 3.4.3薄膜長時間操作的特性 48 3.4.3.1長時間操作的效能 48 3.4.4泥水分離 53 四、結論 56 五、參考文獻 57

    1. M. Mulder, Basic principles of membrane technology. 1996: Springer Science & Business Media.
    2. S. Kuiper, C.J.M van Rijn, W. Nijdam, M.C. Elwenspoek, Development and applications of very high flux microfiltration membranes. Journal of Membrane Science, 1998. 150(1): p. 1-8.
    3. A. Cimini, M. Moresi, Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality. Journal of Food Science, 2016. 81(10): p. E2521-E2528.
    4. C.J.M van Rijn, W. Nljdam, M. Elwenspoek. High flow rate microsieve for biomedical applications. in Proceedings of the ASME dynamic systems and control division. 1995.
    5. A. Julbe, C. Guizard, A. Larbot L. Cot, A. Giroir-Fendler, The sol-gel approach to prepare candidate microporous inorganic membranes for membrane reactors. Journal of Membrane Science, 1993. 77(2): p. 137-153.
    6. S.H. Tabatabaei, P.J. Carreau, A. Ajji, Microporous membranes obtained from PP/HDPE multilayer films by stretching. Journal of Membrane Science, 2009. 345(1): p. 148-159.
    7. P. Apel, Track etching technique in membrane technology. Radiation Measurements, 2001. 34(1): p. 559-566.
    8. P.Yu. Apel, I.V. Blonskaya, S.N. Dmitriev, O.L. Orelovitch, B. Sartowskab, Structure of polycarbonate track-etch membranes: Origin of the “paradoxical” pore shape. Journal of Membrane Science, 2006. 282(1): p. 393-400.
    9. H. Matsuyama, M. Teramoto, R. Nakatani, T. Maki, Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. Journal of Applied Polymer Science, 1999. 74(1): p. 171-178.
    10. H. Matsuyama, M. Tachibana, T. Maki, M. Teramoto, Light-scattering study on porous membrane formation by dry-cast process. Journal of Applied Polymer Science, 2002. 86(13): p. 3205-3209.
    11. D.M. Wang, T.T. Wu, F.C. Lin, J.Y. Hou, J.Y. Lai, A novel method for controlling the surface morphology of polymeric membranes. Journal of Membrane Science, 2000. 169(1): p. 39-51.
    12. B.S. Lalia, E. Guillen-Burrieza, H.A. Arafat, R.Hashaikeh, Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. Journal of Membrane Science, 2013. 428: p. 104-115.
    13. B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 2013. 326: p. 77-95.
    14. C.X. Huang, T. Kamra, S. Chaudhary, and X.T. Shen, Breath Figure Patterns Made Easy. Acs Applied Materials & Interfaces, 2014. 6(8): p. 5971-5976.
    15. Rayleigh, Breath Figures. Nature, 1911. 86(2169): p. 416-417.
    16. G. Widawski, M. Rawiso, B. Francois, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature, 1994. 369(6479): p. 387-389.
    17. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001. 292(5514): p. 79-83.
    18. K.H. Wong, M. Hernández-Guerrero, A.M. Granville, T.P. Davis, C. Barner-Kowollik, M.H. Stenzel, Water-assisted formation of honeycomb structured porous films. Journal of Porous Materials, 2006. 13(3): p. 213-223.
    19. M.S. Park, J.K. Kim, Broad-Band Antireflection Coating at Near-Infrared Wavelengths by a Breath Figure. Langmuir, 2005. 21(24): p. 11404-11408.
    20. M.S. Park, W.C. Joo, J.K. Kim, Porous Structures of Polymer Films Prepared by Spin Coating with Mixed Solvents under Humid Condition. Langmuir, 2006. 22(10): p. 4594-4598.
    21. M. Orlov, I. Tokarev, A. Scholl, A. Doran, S. Minko, pH-Responsive Thin Film Membranes from Poly(2-vinylpyridine):  Water Vapor-Induced Formation of a Microporous Structure. Macromolecules, 2007. 40(6): p. 2086-2091.
    22. W. Madej, A. Budkowski, J. Raczkowska, J. Rysz, Breath Figures in Polymer and Polymer Blend Films Spin-Coated in Dry and Humid Ambience. Langmuir, 2008. 24(7): p. 3517-3524.
    23. K. Hiwatari, T. Serizawa, F. Seto, A. Kishida, Y. Muraoka, M. Akashi, Graft copolymers having hydrophobic backbone and hydrophilic branches xxxiv. fabrication and control of honeycomb structure prepared from amphiphilic graft copolymers. Polymer Journal, 2001. 33(9): p. 669-675.
    24. L. Roszol, T. Lawson, V. Koncz, Z. Noszticzius, M. Wittmann, T. Sarkadi, P. Koppa, Micropatterned Polyvinyl Butyral Membrane for Acid−Base Diodes. The Journal of Physical Chemistry B, 2010. 114(43): p. 13718-13725.

    25. J. Mansouri, E. Yapit, V. Chen, Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. Journal of Membrane Science, 2013. 444: p. 237-251.
    26. T. Nishikawa, R. Ookura, J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara, M. Shimomura, Fabrication of Honeycomb Film of an Amphiphilic Copolymer at the Air−Water Interface. Langmuir, 2002. 18(15): p. 5734-5740.
    27. L.A. Connal, P.A. Gurr, G.G. Qiao, D.H. Solomon, From well defined star-microgels to highly ordered honeycomb films. Journal of Materials Chemistry, 2005. 15(12): p. 1286-1292.
    28. B.Q. He, J.X. Li, X.J. Zhang, Z.X. Li, Y.J. Hou, C.J. Shi, Honeycomb-Structured Porous Films Controlled by the Temperature of Water Bath. Polymer Journal, 2008. 40(12): p. 1180-1184.
    29. I.A. Bashmakov, L.V. Govor, L.V. Solovieva, J. Parisi, Preparation of Self-Assembled Carbon Network Structures with Magnetic Nanoparticles. Macromolecular Chemistry and Physics, 2002. 203(3): p. 544-549.
    30. Y. Uraki, J. Nemoto, H. Otsuka, Y. Tamai, J. Sugiyama, T. Kishimoto, M. Ubukata, H. Yabu, M. Tanaka, M. Shimomura, Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydrate Polymers, 2007. 69(1): p. 1-6.
    31. D. Ishii, H. Yabu, M. Shimomura, Selective metal deposition in hydrophobic porous cavities of self-organized honeycomb-patterned polymer films by all-wet electroless plating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313: p. 590-594.
    32. T. Ohzono, M. Shimomura, Simple fabrication of ring-like microwrinkle patterns. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 284: p. 505-508.
    33. W. Sun, L.Y. Shen, J.M. Wang, K. Fu, J. Ji, Netlike Knitting of Polyelectrolyte Multilayers on Honeycomb-Patterned Substrate. Langmuir, 2010. 26(17): p. 14236-14240.
    34. V. Vohra, S. Yunus, A. Attout, U. Giovanella, G. Scavia, R. Tubino, C. Botta, A. Bolognesi, Bifunctional microstructured films and surfaces obtained by soft lithography from breath figure arrays. Soft Matter, 2009. 5(8): p. 1656-1661.
    35. Y. Uraki, Y. Tamai, T. Hirai, K. Koda, H. Yabu, M. Shimomura, Fabrication of honeycomb-patterned cellulose material that mimics wood cell wall formation processes. Materials Science and Engineering: C, 2011. 31(6): p. 1201-1208.

    36. N.E. Zander, J.A. Orlicki, A.S. Karikari, T.E. Long, A.M. Rawlett, Super-Hydrophobic Surfaces via Micrometer-Scale Templated Pillars. Chemistry of Materials, 2007. 19(25): p. 6145-6149.
    37. S.S. Chen, X.M. Lu, Z.J. Huang, Q.H. Lu, In situ growth of a polyphosphazene nanoparticle coating on a honeycomb surface: facile formation of hierarchical structures for bioapplication. Chemical Communications, 2015. 51(26): p. 5698-5701.
    38. S.S. Chen, X.M. Lu, Y. Hua, Q.H. Lu, Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomaterials Science, 2015. 3(1): p. 85-93.
    39. S. Mongkhontreerat, M.V. Walter, Y.L. Cai, H. Brismar, A. Hult, M. Malkoch, Functional porous membranes from amorphous linear dendritic polyester hybrids. Polymer Chemistry, 2015. 6(13): p. 2390-2395.
    40. L. Ghannam, H. Garay, J. François, L. Billon, New Polymeric Materials with Interferential Optical Properties. Macromolecular Chemistry and Physics, 2007. 208(13): p. 1469-1479.
    41. N. Kurono, R. Shimada, T. Ishihara, M. Shimomura, Fabrication and Optical Property of Self-Organized Honeycomb-Patterned Films. Molecular Crystals and Liquid Crystals, 2002. 377(1): p. 285-288.
    42. M.T. Calejo, T. Ilmarinen, H. Skottman, M. Kellomäki, Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomaterialia, 2018. 66: p. 44-66.
    43. D.A. Tomalia, Supramolecular chemistry: fluorine makes a difference. Nature materials, 2003. 2(11): p. 711-712.
    44. M.V. Walter, M. Malkoch, Simplifying the synthesis of dendrimers: accelerated approaches. Chemical Society Reviews, 2012. 41(13): p. 4593-4609.
    45. L.A. Connal, R. Vestberg, C.J. Hawker, G.G. Qiao, Dramatic Morphology Control in the Fabrication of Porous Polymer Films. Advanced Functional Materials, 2008. 18(22): p. 3706-3714.
    46. W.H. Ting, C.C. Chen, S.H.A. Dai, S.Y. Suen, I.K. Yang, Y.L. Liu, F.M.C. Chen, R.J. Jeng, Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation. Journal of Materials Chemistry, 2009. 19(27): p. 4819-4828.
    47. C.C. Chang, T.Y. Juang, W.H. Ting, M.S. Lin, C.M. Yeh, S.H.A. Dai, S.Y. Suen, Y.L. Liu, R.J. Jeng, Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics, 2011. 128(1-2): p. 157-165.

    48. C.H. Wu, W.H. Ting, Y.W. Lai, S.H.A. Dai, W.C. Su, S.H. Tung, R.J. Jeng, Tailored honeycomb-like polymeric films based on amphiphilic poly(urea/malonamide) dendrons. Rsc Advances, 2016. 6(94): p. 91981-91990.
    49. N. Maruyama, T. Koito, J. Nishida, T. Sawadaishi, X. Cieren, K. Ijiro, O. Karthaus, M. Shimomura, Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films, 1998. 327: p. 854-856.
    50. D. Beysens, Dew nucleation and growth. Comptes Rendus Physique, 2006. 7(9): p. 1082-1100.
    51. T. Nishikawa, J. Nishida, R. Ookura, S. Nishimura, S. Wada, T. Karino, M. Shimomura, Mesoscopic patterning of cell adhesive substrates as novel biofunctional interfaces. Materials Science and Engineering: C, 1999. 10(1-2): p. 141-146.
    52. L.S. Wan, J.W. Li, B.B. Ke, Z.K. Xu, Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation. Journal of the American Chemical Society, 2012. 134(1): p. 95-98.
    53. S.S. Chen, S. Gao, J.G. Jing, Q.H. Lu, Designing 3D Biological Surfaces via the Breath-Figure Method. Adv Healthc Mater, 2018. 7(6): p. 1701043.
    54. H.L. Cong, J.L. Wang, B. Yu, J.G. Tang, Preparation of a highly permeable ordered porous microfiltration membrane of brominated poly(phenylene oxide) on an ice substrate by the breath figure method. Soft Matter, 2012. 8(34): p. 8835-8839.
    55. Y. Ou, D. Zhou, Z.K. Xu, L.S. Wan, Surface modification of self-assembled isoporous polymer membranes for pressure-dependent high-resolution separation. Polymer Chemistry, 2019. 10(23): p. 3201-3209.
    56. C. Du, A.J. Zhang, H. Bai, L. Li, Robust Microsieves with Excellent Solvent Resistance: Cross-Linkage of Perforated Polymer Films with Honeycomb Structure. Acs Macro Letters, 2013. 2(1): p. 27-30.
    57. H. Yuan, B.Yu, H.L. Cong, Qiao, H. Peng, Z. Yang, Y.L. Luo, M. Chi, Preparation of highly permeable BPPO microfiltration membrane with binary porous structures on a colloidal crystal substrate by the breath figure method. Journal of Colloid and Interface Science, 2016. 461: p. 232-238.
    58. X.H. Ruan, K.M. Zhang, X.B. Jiang, X.J. Zhang, X.M.Yan, N. Zhang, G.H. He, Facile fabrication of reinforced homoporous MF membranes by in situ breath figure and thermal adhesion method on substrates. Journal of Membrane Science, 2018. 554: p. 291-299.
    59. L.W. Wu, L.S. Wan, Y. Ou, L.W. Zhu, Z.K. Xu, Fabrication of Transferable Perforated Isoporous Membranes on Versatile Solid Substrates via the Breath Figure Method. Advanced Materials Interfaces, 2015. 2(16): p. 1500285.

    無法下載圖示 全文公開日期 2024/10/05 (校內網路)
    全文公開日期 2024/10/05 (校外網路)
    全文公開日期 2024/10/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE