簡易檢索 / 詳目顯示

研究生: 呂佳成
Chia-chen Lu
論文名稱: 利用沈澱微過濾程序回收光電業廢水中磷酸鹽
Phosphate Recovery from TFT-LCD Manufacturing Wastewater by a Hybrid Precipitation-Microfiltration
指導教授: 劉志成
Jhy-chern Liu
口試委員: 李篤中
Duu-jong Lee
黃志彬
Chih-pin Huang
顧洋
Yang Ku
張維欽
Wei-qin Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 97
中文關鍵詞: 沈澱微過濾磷酸鈣回收光電含磷廢水PHREEQC
外文關鍵詞: calcium phosphate, microfiltration, phosphate, PHREEQC, precipitation, recovery, TFT-LCD, wastewater
相關次數: 點閱:322下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要目的在於探討利用沈澱-微過濾程序去除與回收光電業蝕刻廢水中磷酸鹽之可行性。使用鈣鹽作為沈澱劑,控制酸鹼值與濃度莫耳比於最適當操作條件下,分析廢水中磷酸鹽之移除率與分析沉澱物組成,探討磷酸鹽回收再利用之潛力。並結合掃流微過濾進一步分離溶液中固體與液體。探討改變沈澱過程中之酸鹼值與濃度莫耳比、過濾壓力、掃流速度與不同薄膜種類等變因,對濾速的影響。
    結果顯示,控制酸鹼值在8.5至10.5之間,過量的鈣鹽可移除96%以上的磷酸鹽。利用X光繞射分析得知,沈澱物主要以結晶的氫氧基磷灰石(hydroxyapatite, HAP)及非結晶磷酸鹽(amorphous calcium phosphate, ACP)為優勢物種。然而因為蝕刻廢水中含有少量的氟,亦會有少量的氟化鈣與氟化磷灰石(fluorapatite, FAP)存在於沈澱物中。此實驗使用電腦軟體PHREEQC計算理論的熱力學平衡,將模擬出的值與實驗結果做比較。
    以微過濾處理經加鈣沈澱過後之廢水,可有效地分離溶液中固體與液體。以不同條件沈澱後進行過濾,在酸鹼值為8.5時,有較明顯的堵塞現象。使用不同孔徑的薄膜進行過濾,可發現較大的孔徑(0.45μm)雖然能有較高的初始濾速,但也會造成較嚴重的堵塞。而改變操作壓力與掃流速度發現,當操作壓力與掃流速度越大時,可得到較高的初始濾速與穩定濾速。使用疏水性薄膜時,發現改變操作壓力與掃流速度對穩定濾速的影響並不明顯,但所造成的堵塞現象較親水性薄膜嚴重。在所有過濾程序中,濾餅是主要的過濾阻力。使用沈澱-微過濾程序可有效去除磷酸鹽、濁度與總懸浮固體,不僅過濾後水質可達放流水標準,所生成之沈澱物也具有很高的潛力回收再利用。


    The etching wastewater from thin film transistor liquid crystal display (TFT-LCD) manufacturers contains high concentration of phosphate. The aim of this investigate was to study the feasibility of phosphate removal and recovery by a hybrid precipitation-microfiltration process. This study investigates phosphate removal efficiency and composition of precipitates using precipitation by calcium salts under optimum values of pH and Ca/PO4 molar ratios, followed by crossflow microfiltration (MF) for solid-liquid separation. The effects of operation conditions, such as pH and molar ratio of precipitation, membrane type, filtration pressure, and crossflow velocity on filtration flux and permeate quality were investigated.
    The results showed that excess calcium could induce over 96% phosphate removal efficiency at pH 8.5 to 10.5. From X-ray diffraction (X-RD) analysis showed that the dominant phase was found to be hydroxyapatite (Ca5(PO4)3OH, HAP)and amorphous calcium phosphate (ACP). However, a small amount of fluoride present in etching wastewater, both fluorite and fluorapatite (Ca5(PO4)3F, FAP) precipitates may form as well. Thermodynamic equilibria were modeled with PHREEQC and compared with experimental results.
    Crossflow MF of precipitated wastewater can efficiently separate solid and liquid. When assessing effects of different precipitation conditions on MF, significant fouling was at pH 8.5. The larger pore size of membrane resulted in increased initial flux, but also the fouling increased. The initial flux and steady state flux increased with increasing filtration pressure and crossflow velocity when using hydrophilic membrane, but the effect on hydrophobic was insignificant. Cake resistance contributed to the majority of total filtration resistance among all MF experiments. Hybrid precipitation-microfiltration process not only effectively removes phosphate, turbidity, and TSS, but also the precipitates can be potentially recovered and reused.

    中文摘要.....................................................................I ABSTRACT.....................................................................II TABLE OF CONTENTS............................................................IV LIST OF FIGURES..............................................................VI LIST OF TABLE................................................................IX CHAPTER 1 INTRODUCTION.................................................................1 1.1 Background.............................................................1 1.2 Objectives.............................................................2 CHAPTER 2 LITERATURE REVIEW...............................................4 2.1 Wastewater from TFT-LCD manufactures...................................4 2.1.1 TFT-LCD industry and manufacturing process..........................4 2.1.2 TFT-LCD wastewater..................................................5 2.2 Phosphorus: regulations and effects....................................6 2.3 Phosphate Removal and recovery.........................................7 2.3.1 Phosphorus removal..................................................7 2.3.2 Phosphorus recovery.................................................8 2.4 Chemical precipitation for phosphate removal and recovery..............9 2.5 Membrane filtration process............................................12 2.5.1 Microfiltration........................................................13 2.5.2 Permeate flux..........................................................14 2.5.3 Membrane fouling phenomena.............................................15 CHAPTER 3 EXPERIMENTAL....................................................19 3.1 Source of wastewater...................................................19 3.2 Materials..............................................................21 3.3 Equipments and instruments.............................................22 3.4 Experimental procedure.................................................24 3.4.1 Characterization of wastewater.........................................24 3.4.2 Precipitation by calcium salts followed by microfiltration.............26 3.4.3 Crossflow microfiltration of pretreated wastewater.....................28 3.5 Analysis procedure.....................................................30 3.5.1 pH meter...............................................................30 3.5.2 Turbidity..............................................................30 3.5.3 Particle size distribution.............................................30 3.5.4 Total suspended solid..................................................30 3.5.5 Ion chromatography.....................................................31 3.5.6 Inductively coupled plasma – atomic emission spectrometer.............31 3.5.7 Scanning electron microscopy (SEM) and energy dispersive x-ray spectrometer (EDX) analysis........................................32 3.5.8 X-ray diffraction......................................................32 3.5.9 Modeling with PHREEQC 2.8..............................................32 CHAPTER 4 RESULTS AND DISCUSSION...........................................34 4.1 Precipitation of calcium phosphate.....................................34 4.1.1 Optimum molar ratio (Ca:PO4) and pH value of phosphate removal.......................................................34 4.1.2 Solid characterization.................................................42 4.2 Crossflow Microfiltration of precipitated wastewater...................51 4.2.1 Effects of pretreatment on permeate flux...............................51 4.2.2 Effects of membrane type...............................................63 4.2.3 Effects of filtration pressure and crossflow velocity..................74 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS........................................90 REFERENCES APPENDIX-A JCPDS CHART APPENDIX-B PHREEQC CODING.

    APHA, AWWA, & WEF. (1995). Standard Methods for the Examination of Water and Wastewater. 19th edition, Washington, DC, USA.
    Arora, N., & Davis, R. H. (1994). Yeast cake layers as secondary membranes in dead-end microfiltration of bovine serum albumin. Journal Membrane Science, 92(3), 247–256.
    Baker, R. J., Fane, A. G., Fell, C. J., & Yoo, B. H. (1985). Factors affecting flux in crossflow filtration. Desalination, 53(1-3), 81-93.
    Barbara, G. & Jarosław, W. (2005). Removal of phosphates and fluorides from industrial wastewater. Desalination, 189(1-3), 261-268.
    Belfort, G., Davis, R. H., Zydney, A. L. (1994). The behavior of suspensions and macromolecular solutions in crossflow microfiltration. Journal of Membrane Science, 96(1-2), 1-58.
    Booker, N. A., Priestley, A. J., & Fraser, I. H. (1999). Struvite formation in wastewater treatment plants: opportunities for nutrient recovery. Environment Technology, 20(7), 777-782.
    Boskey, A. L. & Posner, A. S. (1973). Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. a pH-dependent, solution-mediated, solid-solid conversion. The Journal of Physical Chemistry, 77(19), 2313-2317.
    Brett, S.W., Guy, J. A., & Morse, G. K.(1997). Phosphorus Removal and Recovery Technologies. Selper Publishing, London, UK.
    Brown, W.E. (1973) Environmental Phosphorus Handbook. Wiley, New York, 208.
    Chang, M. F. & Liu, J. C. (2007). Precipitation removal of fluoride from semiconductor wastewater. Journal of Environmental Engineering, 133(4), 419-425.
    Chuang, S. H. & Ouyang, C. F. (2000). The biomass fractions of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphorus removal system. Water Research, 34(8), 2283-2290.
    Connell, H., Zhu, J., & Bassi, A. (1999). Effect of particle shape on crossflow filtration flux. Journal of Membrane Science, 153(1), 121-139
    David, P. (2003). Selective membranes. Polution Engineering, 35(8), 28-32.
    Dorozhkin, S. V. (2007). Calcium orthophosphates. Journal of Materials Science, 42(4), 1061-1095.
    Driver, J., Lijmbach, D., & Steen, I. (1999) Why recover phosphorus for recycling, and how? Environmental Technology, 20(7), 769-775.
    Eggers, E., Dirkzwager AH., & van der Honing H. (1991). Full-scale experiences with phosphate crystallization in a crystalactor. Water Science Technology, 24(4), 333-334.
    Elliott, J. C. (1994). Structure and chemistry of the apatites and other calcium orthophosphates. Studies in Inorganic Chemistry, vol.18. Amsterdam: Elsevier.
    Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low cost materials. Water Research, 37(20), 4929-4937.
    Feenstra, T. P., Hop, J., & DeBruyn, P. L. (1981). The influence of small amounts of magnesium on the formation of calcium phosphates in moderately supersaturated solutions. Journal of Colloid and Interface Science., 83(2), 583-588.
    Goosen, M. F. A., Sablani, S. S., Al-Hinai, H., Al-Obeidani, S., Al-Belushi, R., & Jackson, D., (2004). Fouling or reverse osmosis and ultrafiltration membrane: a critical review. Separetion Science and Technology, 39(10), 2261-2297.
    Grzmil, B. & Wronkowski, J. (2006). Removal of phosphates and fluorides from industrial wastewater. Desalination, 189(1-3), 261-268.
    Hasan, A., Mousa., Saad, A., & Al-Hitmi. (2007). Treatability of wastewater and membrane fouling. Desalination, 217(1-3), 65-73.
    Ho, J. M. (2008). A study on Precipitation of Phosphate Removal from TFT-LCD Manufacturing Wastewater. Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei.
    Ho, W. S. & Sirgar, K. K., (1992). Membrane Handbook. Van Nostrand Reinhold, New York, USA.
    Hosni, K., Moussa, S. B., & Amor, M. B. (2007). Conditions influencing the removal of phosphate from synthetic wastewater: influence of the ionic composition. Desalination, 206(1-3), 279-285.
    Hosni, K., Moussa, S. B., Chachi A., & Amor, M. B. (2008). The removal of PO43- by calcium hydroxide from synthetic wastewater optimization of operating conditions. Desalination, 223(1-3), 337-343.
    Hung, M. T. & Liu, J. C. (2007). Reclamation of backwash water by crossflow microfiltration – a case study. Journal of Water Supply: Research and Technology- AQUA, 56(8), 479-493
    Hwang, K. J., Hsu, Y. L., & Tung, K. L. (2006). Effect of particle size on the performance of crossflow microfiltration. Advanced Powder Technology, 17(2), 189-206.
    Hwang, K. J., Liao, C. Y., & Tung, K. L. (2007). Analysis of particle fouling during microfiltration by use of blocking models. Journal of Membrane Science, 287(2), 287-293.
    Jiangm, J-Q. & Graham, N. J. D. (1998). Pre-polymerised inorganic coagulant and phosphorus removal by coagulation-A review. Water SA, 24(3), 237-244.
    Johansson, L. & Gustafsson, J. P. (2000). Phosphate removal using blast furnace slags and opoka-mechanisms. Water Research, 34(1), 259-265.
    Kawakatus, T., Nakao, S. I., & kimura, S. (1993). Effect of pore size of membrane on flux in crossflow filtration. Journal of Membrane Science, 81(1-2), 173-190.
    Kibalczyc, W., Christoffersen, J., Christoffersen, M. R., Zielenkiewicz, A., & Zielenkiewicz, W. (1990). The effect of magnesium-ions on the precipitation of calcium phosphates. Journal of crystal growth, 106(2-3), 355-366.
    Kiely, G. (1997). Environmental Engineering. McGraw-Hill, New York, USA.
    Liu, C. Z. (2004). Treatment of Fluoride-Containing Wastewater of Semiconductor Manufacturer by Ultrafiltration. Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei.
    Luz, E., de-Bashan, & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research, 38(19), 4222-4246
    Lynn, A. K. & Bonfield, W. (2005). A novel method for the simultaneous, Titrant-Free control of pH and calcium phosphate mass yield. Account of Chemical Research, 38(3), 202–207.
    Maurer, M. & Boller, M. (1999). Modelling of phosphorus precipitation in wastewater treatment plants with enhanced biological phosphorus removal. Water Science and Technology, 39(1), 147-163.
    McCarthy, A. A., Walsh, P. K., & Foley, G. (2002). Experimental techniques for quantifying the cake mass, the cake and membrane resistances and the specific cake resistance during crossflow filtration of microbial suspension. Journal of Membrane Science, 201(1-2), 31-45.
    Melikhov, I. V., Lazic, S., & Vukovic, Z. (1989). The effect of dissolved impurity on calcium phosphate nucleation in supersaturated medium. Journal of colloid and interface science, 127(2), 317-327.
    Metcalf. & Eddy., (2003). Wastewater Engineering: Treatment and Reuse. 4th edition. McGraw Hill Book Company, New York, USA.
    Morse, G. K., Brett, S. W., Guy, J. A., & Lester, J. N. (1998). Review: Phosphorus removal and recovery technologies. The Science of the Total Environment, 212(1), 69-81.
    Muhammad, Al-Malack, H., Alaadin, Bukhari, A., Nabil, S., & Abuzaid. (2004). Crossflow microfiltration of electrocoagulated kaolin suspension: fouling mechanism. Journal of Membrane Science, 243(1-2), 143-153.
    Nancollas, G. H. & Koutsoukos. P. G. (1980). Calcium phosphate nucleation and growth in solution. Progress in Crystal Growth and Characterization, 3(1), 77-102.
    Nelson, N. O., Mikkelsen, R. L. & Hesterberg, D. L. (2003). Struvite precipitation in anaerobic swine liquid: effect of pH and Mg : P ratio and determination of rate constant. Biosource Technology, 89(3), 229-236.
    Niewersch, C., Koh, C. N., Wintgens, T., Melin, T., Schaum, C., & Cornel, P. (2008). Potentials of using nanodiltration to recover phosphorus from sewage sludge. Water Science and Technology, 57(5), 707-714.
    Ohlinger, K. N., Young, T. M., & Schroeder, E. D. (2000). Postdigestion struvite precipitation using a fluidized bed reactor. Journal of Environment Engineering, 126(4), 361-368.
    Peuchot, M. M. & Aim, R. B. (1992). Improvement of crossflow microfiltration performances with flocculation. Journal of Membrane Science, 68(3), 241-248.
    Rosmaninho, R. & Melo, L. F. (2006). The effect of citrate on calcium phosphate deposition from simulated milk ultrafiltrate (SMUF) solution. Journal of Food Engineering, 73(4), 379-387.
    Seckler, M. M., Bruinsma, O. S. L., & VanRosmalen, G. M., (1996). Calcium phosphate precipitation in a fluidized bed in relation to process conditions: a black box approach. Water Research, 30(7), 1677-1685.
    Setyadhi, L. (2008). The oxidation-Microfiltration removal of Fe(II) from water. Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei.
    Shan, H. & Neufeld R. D., (2007). Irreversible fouling during multicycle microfiltration of wastewater effluent. Water Environment Research, 79(13), 2527-2535.
    Song, Y., Hahn, H. H., & Hoffmann, E. (2002). Effects of solution conditions on the precipitation of phosphate for recovery a thermodynamic evaluation. Chemosphere, 48(10), 1029-1034.
    Stratful, I., Scrimshaw, M. D., & Lester, J. N. (2001). Conditions influencing the precipitation of magnesium ammonium phosphate. Water Research, 35(17), 4191-4199.
    Stumm, W. & Morgan, J. J. (1996). Aquatic Chemistry 3rd ed. John Wiley and Sons, Inc. New York, USA.
    Valsami-Jones, E. (2001). Mineralogical controls on phosphorus recovery from wastewaters. Mineralogical Magazine, 65(5), 611-620.
    Voges, L. E., Benjamin, P. E., & Chang, M. M. (2001). Use of iron oxides to enhace metal removal in crossflow microfiltraion. Journal of Environmental Engineering, 127(5), 411-419.
    Vollenweider, R. A. (1975). Input-output Models with Special Reference to the Phosphorus Loading Concept in Limnology. Schweizerische Zeitschrift Fur Hydrologie, 37(1), 53-83.
    Wang, F., Volodymyr, V., & Tarabara. (2008). Pore blocking mechanisms during early stages of membrane fouling by colloids. Journal of Colloid and Interface Science, 328(2), 464-469.
    Warmadewanthi & Liu, J. C. (2009). Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology, 64(3), 368-373.
    Yi, W.G. & Lo, K. V. (2003). Phosphate recovery from greenhouse wastewater. Journal of Environmental Science and Health B, 38(4), 502-509.
    Zhang, J., Yuxin, S., Chang, Q., Liu, X., & Meng, G. (2006). Improvement of crossflow microfiltration performances for treatment of phosphorus-containing wastewater. Desalination, 194(1-3), 182-191.
    Zhong, J., Sun, X. & Wang, C. (2003). Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Separation and Purification Technology, 32(1-3), 93-98.
    Zhou, Y. N., Xing, X. H., Liu, Z. H., Cui, L. W., Yu, A. F., Feng, Q., & Yang, H. J. (2008). Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater. Chemosphere, 72(2), 290-298.

    QR CODE