簡易檢索 / 詳目顯示

研究生: 林容賢
Rong-Xian Lin
論文名稱: 用於二階式靜電集塵器之紊流微粒合併裝置其流場特性與性能表現
Flow Characteristics and Performances of the Turbulence Agglomerator in a Two-Stage Electrostatic Precipitator
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 溫琮毅
Tsrong-Yi Wen
蔣雅郁
Ya-Yu Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 懸浮微粒紊流合併裝置靜電集塵器微粒影像測速儀
外文關鍵詞: Particulate Matter, Turbulence agglomerator, Electrostatic Precipitator, Particle Image Velocimetry
相關次數: 點閱:309下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜電集塵器(Electrostatic precipitator, ESP)為一種高效能的空氣清淨裝置,可以有效去除空氣中較大的懸浮微粒(Particulate matter, PM)。但因微粒充電機制的關係,使直徑介於0.1 μm到1 μm之間的微粒較不容易被收集,而將微粒合併在一起,提升微粒遷移率,是改善靜電集塵器對次微米微粒收集不易的方法之一。本研究在微粒充電區前加裝8種不同配置的紊流合併區流道作為紊流合併器(Agglomerator),並使用微粒影像測速儀(Particle image velocimetry, PIV)技術探討紊流合併器內部的流場特性,比較其在不同配置下的合併效率,以及加裝合併器後對次微米微粒的收集效率。本論文中分別探討肋條截面形狀、狹縫以及與壁面的夾角對合併效能之影響。從流場可視化的實驗結果顯示,Z字形截面的肋條能夠產生比四邊形截面的肋條更強且更大範圍的紊流動能(Turbulent kinetic energy, TKE),且在肋條中間開一道狹縫有助於提升肋條後方的紊流動能,而傾斜於壁面135°的肋條則會降低流道內的紊流動能。粒徑量測的結果顯示,紊流合併器能夠確實將次微米微粒合併成較大的微粒,其合併效率與產生的紊流動能有關,且可以有效提升靜電集塵器對次微米微粒的收集效率,但因合併的強度不高,所以合併後的微粒在碰撞到收集板後,有可能破碎回細小的微粒。


    Electrostatic precipitator (ESP) is a high efficiency particle removal technique that can efficiently remove larger Particulate matter (PM). However, due to the limitation of the charging mechanism, the collection efficiency for PM between 0.1-1 μm is lower. One of the methods to solve this problem is to use agglomerator to coagulate the particles together into a larger particle for charging effect. In this study, the flow characteristics inside eight different designs of turbulence agglomerator which was installed before charging section of the ESP were observed by Particle image velocimetry (PIV). By using particle counter, the agglomeration and collection efficiency between different turbulators configuration were also compared. The effects of the ribs profile, slit and inclined angles were investigated. The flow visualization results show that Z-type turbulators create stronger and larger area of turbulent kinetic energy (TKE) than the quadrilateral-type turbulators. The slit in the middle of the ribs can increase the turbulent kinetic energy behind the ribs, while the 135° inclined angle reduces the turbulent kinetic energy. The particle sizer measurement results suggest that turbulence agglomerator successfully coagulated the sub-micro particles into larger particles, and the efficiency is related to the turbulent kinetic energy (TKE). The agglomeration of particles improves collection efficiency of the ESP for sub-micro particles, but coagulated particles may break into sub-micro particles again while colliding on the collection plate due to low cohesion force.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1.  研究背景 1 1.2.  文獻回顧 3 1.2.1. 靜電集塵器之型式 4 1.2.2. 不同型式的微粒合併裝置 4 1.2.3. 內流道之擾流板設計 9 1.2.4. 使用PIV技術觀察靜電集塵器流場變化 12 1.3.  研究目的 15 1.4.  論文架構 15 第2章 實驗原理與方法 16 2.1.  微粒在紊流場中的合併機制 16 2.1.1. 微粒對流場的跟隨性 16 2.1.2. 微粒間的臨界速度 17 2.2.  實驗設置 17 2.2.1. 靜電集塵器設置 18 2.2.2. 流場可視化設置 25 2.2.3. 粒徑量測設置 36 2.3.  實驗步驟 37 2.3.1. 流場可視化實驗流程 37 2.3.2. 粒徑量測實驗流程 38 2.4.  實驗資料處理 39 2.4.1. PIV分析 39 2.4.2. 實驗結果出圖 43 2.5.  實驗參數與實驗條件 44 第3章 結果與討論 46 3.1.  入口風速控制 46 3.2.  紊流合併區之PIV結果 48 3.2.1. 速度分布圖 48 3.2.2. 紊流強度場 54 3.2.3. 紊流動能場 60 3.2.4. 討論 63 3.3.  粒徑量測 63 3.3.1. 粒徑分布圖 64 3.3.2. 合併效率 69 3.3.3. 收集效率 70 3.3.4. 改變放電電壓對粒徑分布的影響 71 3.3.5. 討論 72 第4章 結論與未來建議 74 4.1.  結論 74 4.2.  未來建議 75 參考文獻 76

    [1] Z. Pražnikar and J. Pražnikar, "The effects of particulate matter air pollution on respiratory health and on the cardiovascular system," Slovenian Journal of Public Health, vol. 51, no. 3, pp. 190-199, 2012, doi: 10.2478/v10152-012-0022-z.
    [2] N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit and V. J. Munster, "Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1," New England Journal of Medicine, vol. 382, no. 16, pp. 1564-1567, 2020, doi: 10.1056/NEJMc2004973.
    [3] X. Zhang, M. Tang, F. Guo, F. Wei, Z. Yu, K. Gao, M. Jin, J. Wang and K. Chen, "Associations between air pollution and COVID-19 epidemic during quarantine period in China," Environ Pollut, vol. 268, no. Pt A, p. 115897, Jan 1 2021, doi: 10.1016/j.envpol.2020.115897.
    [4] A. Mizuno, "Electrostatic precipitation," Ieee Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 5, pp. 615-624, Oct 2000, doi: 10.1109/94.879357.
    [5] S. A. Ahmedou Saleck, O. Rouaud and M. Havet, Electrohydrodynamic enhancement of heat and mass transfer in food processes. 2007.
    [6] W. C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons, 1999.
    [7] A. Jaworek, A. Krupa and T. Czech, "Modern electrostatic devices and methods for exhaust gas cleaning: A brief review," Journal of Electrostatics, vol. 65, no. 3, pp. 133-155, 2007, doi: 10.1016/j.elstat.2006.07.012.
    [8] G.-Y. Lin, C.-J. Tsai, S.-C. Chen, T.-M. Chen and S.-N. Li, "An Efficient Single-Stage Wet Electrostatic Precipitator for Fine and Nanosized Particle Control," Aerosol Science and Technology, vol. 44, no. 1, pp. 38-45, 2010, doi: 10.1080/02786820903338298.
    [9] T.-M. Chen, C.-J. Tsai, S.-Y. Yan and S.-N. Li, "An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles," Separation and Purification Technology, vol. 136, pp. 27-35, 2014, doi: 10.1016/j.seppur.2014.08.032.
    [10] A. Jaworek, A. Marchewicz, A. T. Sobczyk, A. Krupa and T. Czech, "Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission," Progress in Energy and Combustion Science, vol. 67, pp. 206-233, 2018, doi: 10.1016/j.pecs.2018.03.003.
    [11] J. Hautanen, M. Kilpeläinen, E. I. Kauppinen, K. Lehtinen and J. Jokiniemi, "Electrical Agglomeration of Aerosol Particles in an Alternating Electric Field," Aerosol Science and Technology, vol. 22, no. 2, pp. 181-189, 1995, doi: 10.1080/02786829408959739.
    [12] J.-H. Ji, J. Hwang, G.-N. Bae and Y.-G. Kim, "Particle charging and agglomeration in DC and AC electric fields," Journal of Electrostatics, vol. 61, no. 1, pp. 57-68, 2004, doi: 10.1016/j.elstat.2003.12.003.
    [13] A. Laitinen, J. Hautanen, J. Keskinen, E. Kauppinen, J. Jokiniemi and K. Lehtinen, "Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow," Journal of Electrostatics, vol. 38, no. 4, pp. 303-315, 1996/12/01/ 1996, doi: https://doi.org/10.1016/S0304-3886(96)00038-1.
    [14] G. Shen, X. Huang, C. He, S. Zhang and L. An, "Experimental study of acoustic agglomeration and fragmentation on coal-fired ash with different particle size distribution," Powder Technology, vol. 325, pp. 145-150, 2018, doi: 10.1016/j.powtec.2017.10.037.
    [15] J. Xu, Y. Yu, J. Zhang, Q. Meng and H. Zhong, "Heterogeneous condensation of water vapor on particles at high concentration," Powder Technology, vol. 305, pp. 71-77, 2017, doi: 10.1016/j.powtec.2016.09.078.
    [16] Z. Sun, L. Yang, S. Chen and X. Wu, "Promoting the removal of fine particles by turbulent agglomeration with the coupling of different-scale vortexes," Powder Technology, vol. 367, pp. 399-410, 2020, doi: 10.1016/j.powtec.2020.03.062.
    [17] K. R. Aharwal, B. K. Gandhi and J. S. Saini, "Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater," Renewable Energy, vol. 33, no. 4, pp. 585-596, 2008, doi: 10.1016/j.renene.2007.03.023.
    [18] J. C. Han and Y. M. Zhang, "HIGH-PERFORMANCE HEAT-TRANSFER DUCTS WITH PARALLEL BROKEN AND V-SHAPED BROKEN RIBS," International Journal of Heat and Mass Transfer, vol. 35, no. 2, pp. 513-523, Feb 1992, doi: 10.1016/0017-9310(92)90286-2.
    [19] S. Tamna, S. Skullong, C. Thianpong and P. Promvonge, "Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators," Solar Energy, vol. 110, pp. 720-735, 2014, doi: 10.1016/j.solener.2014.10.020.
    [20] M. S. Ali, N. Sharma and A. Tariq, "Heat transfer and flow field features between surface mounted trapezoidal-ribs," Journal of Mechanical Science and Technology, vol. 33, no. 10, pp. 5017-5023, 2019, doi: 10.1007/s12206-019-0940-7.
    [21] N. Sharma, A. Tariq and M. Mishra, "Effect of Permeable Ribs on Thermal-Flow Characteristics in an Internal Cooling Duct," Journal of Thermal Science and Engineering Applications, vol. 13, no. 1, 2021, doi: 10.1115/1.4047567.
    [22] T. M. Liou, S. W. Chang and S. P. Chan, "Experimental study on thermal flow characteristics in square serpentine heat exchangers mounted with louver-type turbulators," International Journal of Heat and Mass Transfer, vol. 116, pp. 897-908, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.09.053.
    [23] M. Raffel, C. Willert, S. Wereley and J. Kompenhans, Particle Image Velocimetry: A Practical Guide. 2007.
    [24] J. Podliński, J. Dekowski, J. Mizeraczyk, D. Brocilo and J.-S. Chang, "Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency," Journal of Electrostatics, vol. 64, no. 3-4, pp. 259-262, 2006, doi: 10.1016/j.elstat.2005.06.006.
    [25] T. Ullum, P. S. Larsen and O. �zcan, "Three-dimensional flow and turbulence structure in electrostatic precipitator by stereo PIV," Experiments in Fluids, vol. 36, no. 1, pp. 91-99, 2004, doi: 10.1007/s00348-003-0649-2.
    [26] A. Krupa, J. Podliński, J. Mizeraczyk and A. Jaworek, "Velocity field of EHD flow during back corona discharge in electrostatic precipitator," Powder Technology, vol. 344, pp. 475-486, 2019, doi: 10.1016/j.powtec.2018.12.006.
    [27] 賴建霖, "以微粒影像測速儀探討二階靜電集塵器內之充電微粒軌跡," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/z28x92
    [28] 郭家辰, "探討具有凹槽狀收集電極之二階靜電集塵器內之充電微粒運動特性," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/2cyz78
    [29] D. Gede Suantara, "以微粒影像測速儀探討充電微粒性質對二階靜電集塵器內流動之影響," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/rhb37v
    [30] L. R. Collins and A. Keswani, "Reynolds number scaling of particle clustering in turbulent aerosols," New Journal of Physics, vol. 6, pp. 119-119, 2004, doi: 10.1088/1367-2630/6/1/119.
    [31] C. Anh Ho and M. Sommerfeld, "Modelling of micro-particle agglomeration in turbulent flows," Chemical Engineering Science, vol. 57, no. 15, pp. 3073-3084, 2002/08/01/ 2002, doi: https://doi.org/10.1016/S0009-2509(02)00172-0.
    [32] D. Tarlet, C. Bendicks, C. Roloff, R. Bordás, B. Wunderlich, B. Michaelis and D. Thévenin, "Gas Flow Measurements by 3D Particle Tracking Velocimetry Using Coloured Tracer Particles," Flow, Turbulence and Combustion, vol. 88, no. 3, pp. 343-365, 2011, doi: 10.1007/s10494-011-9361-0.
    [33] P. Atten, F. M. J. McCluskey and A. C. Lahjomri, "The Electrohydrodynamic Origin of Turbulence in Electrostatic Precipitators," IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 705-711, 1987, doi: 10.1109/TIA.1987.4504969.
    [34] M. Hamdi, M. Havet, O. Rouaud and D. Tarlet, "Comparison of different tracers for PIV measurements in EHD airflow," Experiments in Fluids, vol. 55, no. 4, 2014, doi: 10.1007/s00348-014-1702-z.
    [35] T. C. Carvalho and J. T. McConville, "The function and performance of aqueous aerosol devices for inhalation therapy," J Pharm Pharmacol, vol. 68, no. 5, pp. 556-78, May 2016, doi: 10.1111/jphp.12541.
    [36] W. Thielicke and E. J. Stamhuis, "PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB," Journal of Open Research Software, vol. 2, 2014, doi: 10.5334/jors.bl.
    [37] L. Lu and V. Sick, "High-speed particle image velocimetry near surfaces," J Vis Exp, no. 76, Jun 24 2013, doi: 10.3791/50559.
    [38] H. Liu, Z. Li, H. Tan, F. Yang, P. Feng, Y. Du, M. Ren and M. Dong, "Experimental investigation on a novel agglomeration device based on charged ultrasonic spray and vortex generators for improving the removal of fine particles," Fuel, vol. 287, 2021, doi: 10.1016/j.fuel.2020.119549.

    QR CODE