簡易檢索 / 詳目顯示

研究生: Endiries Yibru Hanurry
Endiries Yibru Hanurry
論文名稱: PAMAM Dendritic Mediated Nanocarriers as Effective Vehicles for siRNA, Chemotherapeutic and Immunotherapeutic Drugs in Cancer Therapy
PAMAM Dendritic Mediated Nanocarriers as Effective Vehicles for siRNA, Chemotherapeutic and Immunotherapeutic Drugs in Cancer Therapy
指導教授: 蔡協致
Hsieh-Chih Tsai
鄭智嘉
Chih-Chia Cheng
口試委員: 高震宇
Chen-Yu Kao
鄭智嘉
Chih-Chia Cheng
Yi-Chun Chen
Yi-Chun Chen
Jui-Yang Lai
Jui-Yang Lai
Shuian-Yin Lin
Shuian-Yin Lin
Yu-Shuan Chen
Yu-Shuan Chen
蔡協致
Hsieh-Chih Tsai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 173
中文關鍵詞: Adipic acid dihydrazideApoptosisBiotinCytokinesDoxorubicinHydrazone BondHydrogelIndoximodImmunochemotherapyImmunogenic Cell DeathPAMAM dendrimerOligoalkylamineSmall interference RNA
外文關鍵詞: Adipic acid dihydrazide, Apoptosis, Biotin, Cytokines, Doxorubicin, Hydrazone Bond, Hydrogel, Indoximod, Immunochemotherapy, Immunogenic Cell Death, PAMAM dendrimer, Oligoalkylamine, Small interference RNA
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是由原致癌基因,腫瘤抑制基因或DNA修復基因的丟失,突變或失調引起的疾病的集合,這些疾病導致細胞亞族群的失控生長。儘管發現了用於癌症治療的先進治療方法,但治療效率常常受到多重抗藥性,免疫抑制和嚴重副作用的影響,目前癌症仍然是奈米醫學的主要關注領域。此外,腫瘤選擇性靶向的持續釋放是抗癌治療劑的主要缺點。
    奈米醫學特別是以可控的PAMAM樹枝狀聚合物等智慧奈米載體的靶向給藥系統的開發已成為解決上述問題和提高抗腫瘤藥效的重要策略。PAMAM樹狀大分子表現出高載藥量、非免疫原性、高單分散性、多功能表面基團、多孔腔、理想的滯留性和生物可利用的特性,這些特性目前尚未在所有其他現有的奈米載體中同時觀察到。奈米尺度體系的形成具有明確的尺寸和形狀,在藥物遞送和基因轉染等生物醫學應用中相當普遍。PAMAM樹枝狀聚合物因此吸引我們將其用於基因、化療和免疫療法來治療癌症。本文對PAMAM樹枝狀載體進行了全面的研究,以提高siRNA和抗腫瘤藥物的效率。
    首先,以低烷基胺修飾的PAMAM樹枝狀奈米粒子作為非病毒載體來傳遞siRNA。PAMAM樹狀分子與二乙烯三胺和四乙烯五胺共軛,然後結合siRNA通過靜電相互作用形成不同N/P比的多聚體。多聚體(N/P=8)具有球形奈米粒子,表現出完整的siRNA結合效率,保護了siRNA不被酶破壞。單枝狀聚合物具有無毒、有效改善細胞內化的特點。多聚體在細胞溶膠中發生非定域性並廣泛傳播,表明siRNA在HeLa細胞中具有良好的胞內分佈與傳播。因此,低烷基胺修飾的PAMAM樹枝狀聚合物可以成為體外適當的siRNA奈米載體。
    利用生物素功能化PAMAM樹枝狀奈米粒子,通過運輸介導的內分泌增強吉西他濱的腫瘤特異性傳遞和細胞內化。PG4.5先用DETA修飾,再加入生物素與吉西他濱封裝。PG4.5-DETA-BT/Gem奈米粒子的粒徑為81.6±6.08 奈米,電位為0.47±1.25 mV。PG4.5-DETA-BT/GEM奈米粒子還幫助藥物在酸性環境下持續釋放。PG4.5-DETA-BT/GEM奈米粒子具選擇性靶向癌細胞能力,提高了細胞內化效率。PG4.5-DETA-BT/GEM奈米粒子也顯著增強抗癌細胞增殖活性並誘導凋亡。因此,生物素官能化PAMAM樹枝狀奈米載體可以提供將吉西他濱輸送到癌細胞中的靶向遞送系統。
    此外也製備了具pH響應型PAMAM樹枝狀奈米粒子結合熱敏感水凝膠,用於免疫化療藥物的輸送,以提高免疫原性細胞死亡和抗腫瘤免疫力。用己二酸二酰肼對聚氨酰胺樹狀大分子進行修飾,再用生物素和阿霉素結合,通過酸易損的腙鍵制備PAB-DOX。IND成功地負載在樹枝狀奈米粒子中,然後加入到PCLA-PEG-PCLA熱響應水凝膠中。PAB-DOX/IND奈米粒子具有球形形貌和表面電荷微小的奈米載體,粒徑為121.53 nm。該奈米粒子改善了藥物的持續釋放和細胞吸收效率。PAB-DOX/IND奈米粒子也顯著降低了細胞存活率和誘導凋亡。此外,在生理溫度下含有熱響應性水凝膠的樹枝狀奈米粒子表現出凝膠狀態,並進一步延長了藥物的緩釋時間。此系統能有效抑制腫瘤生長,增強免疫刺激性細胞因子的表達,引發凋亡,減輕腫瘤細胞增殖和誘導的CD8+T細胞活化,共同促進HeLa細胞移植裸鼠的ICD和免疫應答。
    最後,本研究設計與合成了經修飾PAMAM樹狀大分子納米載體和水凝膠,對其理化和生物學效能進行了表徵和檢測。結果證實,這些藥物被有效地遞送,並提高了其效率。因此,PAMAM樹枝狀聚合物載體可作為有效遞送siRNA、化療和免疫治療藥物的良好選擇。在論文的結尾預測了臨床應用之前,加強這一發現的其他展望。


    Cancer is a collection of diseases arises from loss, mutation or dysregulation of proto-oncogenes, tumor suppressor genes or DNA repair genes that led to uncontrolled growth of cell. Despite the discovery of advanced therapeutic approaches for cancer treatment, the efficiency of therapeutics were frequently affected by multidrug resistance, immune suppression and severe side effects; and cancer remains a major focusing area of nanomedicine. The ability to deliver into selective and targeted site of tumor with sustain release is also another challenge of therapeutic agents.
    The progress of controlled delivery system such as tunable PAMAM dendrimer has become a magnificent strategy to address aforementioned issues. PAMAM dendrimer exhibit a unique characteristics of high drug loading capacity, multifunctional surface groups and free cavities that have not been fully observed in any other currently available nanocarriers. In spite of their significant advantage to entrap multiple and high quantity of therapeutic agents, rapid release before its final destination and optimal release at targeted site; and toxicity are still the main challenges. Stimuli responsive linkers and targeting ligands are required to monitor sustained release and enhance the accumulation of therapeutic agent at site of action. Herein, we carried out a comprehensive investigations on the fabrication of stable and biocompatible surface modified PAMAM dendritic based carriers to enhance the efficiency of therapeutic agents by improving their sustained release and accumulation at the targeted site.
    In the first series of investigation, oligoalkylamine modified PAMAM dendritic nanoparticles were developed as non-viral vector to deliver siRNA as precursor to design a personal medicine. It was fabricated by the conjugation of PAMAM dendrimer generation 4.5 (PG4.5) with diethylenetriamine and tetraethylenepentamine followed by siRNA binding to form polyplexes at different N/P ratio through electrostatic interaction. The polyplexes (N/P = 8) exhibited spherical nanoparticles, showed perfect binding efficiency and protected the siRNA against enzyme digestion. Oligoalkylamines modified PG4.5 alone were exhibited nontoxic property and effectively improved cellular internalization. The polyplexes were delocalized and widely spread throughout the cytosol to indicate a decent intracellular biodistribution and endosomal escape of siRNA in HeLa cells.
    In the second series of investigation, biotin functionalized PAMAM dendritic nanoparticle was fabricated to improve targeted delivery of gemcitabine via transporter-mediated endocytosis. PAMAM dendrimer was initially coupled with DETA followed by biotin conjugation and gemcitabine encapsulation. PG4.5-DETA-BT/Gem nanoparticles revealed a spherical shape with 81.6 ± 6.08 nm particle size and 0.47 ± 1.25 mV zeta potential. PG4.5-DETA-BT/GEM nanoparticle also assisted the sustain release at low pH. PG4.5-DETA-BT/GEM nanoparticle was specifically targeted cancer cells, significantly enhanced anti-proliferative activity and induced apoptosis. Biotin-functionalized PAMAM dendritic nanocarrier could, therefore, provide a targeted delivery system to convey gemcitabine into cancer cells.
    In the last series of investigation, pH responsive PAMAM dendritic nanoparticle incorporated thermo-sensitive hydrogel was constructed for the local co-delivery of immunochemotherapeutic drugs to improve immunogenic cell death and antitumor immunity. PAMAM dendrimer was effectively coupled with adipic acid dihydrazide followed by biotin and DOX conjugation to fabricate PAB-DOX via acid vulnerable hydrazone bond. IND was successfully loaded into dendritic nanoparticle and then incorporated into PCLA-PEG-PCLA thermo-responsive hydrogel. The PAB-DOX/IND nanoparticle were exhibited spherical morphology and slightly neutral surface charged nanocarrier with 121.53 nm particle size. The nanoparticle improved the sustained release of drugs and cellular uptake efficiency. PAB-DOX/IND nanoparticle was also significantly reduced proliferation activity and encouraged the induction of program cell death. In addition, dendritic nanoparticle incorporated thermo-responsive hydrogel were further extended the sustained release and accumulation of drugs at the site of action. This formulation was effectively inhibited tumor growth, enhanced immune stimulatory cytokines expression, triggered apoptosis, mitigated tumor cell proliferation and induced CD8+ T cells activation that collectively promote ICD and immune response in HeLa cells grafted nude mice.
    To sum up, PAMAM dendrimer based vehicles could be good candidates to convey siRNA, chemo and immunotherapeutic drugs into tumor tissue. Additional outlooks to strengthen this finding before clinical applications are predicted at the end of the thesis.

    ABSTRACT (CHINESE) I ABSTRACT III ACKNOWLEDGMENTS VI TABLE OF CONTENS VIII LIST OF FIGURES XIII LIST OF TABLES XVII LIST OF SCHEMES XVIII ABBREVIATIONS XVIII CHAPTER – 1 1 1. Introduction 1 1.1 Background 1 1.2 Objectives of the Thesis 4 1.3 Chemicals, Reagents and Instruments 5 1.3.1 Chemicals and Reagents 5 1.3.2 Instruments 6 1.4 Statistical Analysis 6 CHAPTER – 2 7 2. Literature Review 7 2.1 Overview of Cancer 7 2.2 Therapeutic of Cancer 9 2.3 Nanotechnology in Cancer Therapy 13 2.4 Targeting Strategies of Nanocarriers in Cancer Therapy 16 2.5 Stimuli Responsive Nanocarrier System 17 2.6 Dendrimer 21 2.7 Poly (amido)amine Dendrimer 22 2.6.1 Properties of PAMAM Dendrimer 23 2.6.2 Synthesis of PAMAM Dendrimer 25 2.6.3 Surface Modification of PAMAM Dendrimer 26 2.6.4 Surface Modification with Adipic Acid Dihydrazide 28 2.6.5 Surface Modification with Oligoamines 28 2.6.6 Biotinylation 29 2.8 Application of PAMAM Dendrimer 30 2.8.1 PAMAM Dendrimer in Gene Delivery 31 2.8.2 PAMAM Dendrimer in Drug Delivery System 34 CHAPTER – 3 37 3. Oligoalkylamine Modified PAMAM Generation 4.5 Dendritic Nanocarrier for the Transfection of Small Interfering RNA 37 3.1 Introduction 37 3.2 Experiments 39 3.2.1 Synthesis and Characterization of PG4.5-DETA and PG4.5-TEPA 39 3.2.2 Fabrication of PG4.5-DETA and PG4.5-TEPA Polyplexes 39 3.2.3 Binding Ability of PG4.5-DETA and PG4.5-TEPA to siRNA 41 3.2.4 Hydrodynamic Diameter and Surface Charge of Polyplexes 41 3.2.5 Morphology of Polyplexes 41 3.2.6 Heparin-induced siRNA Release Assay of Polyplexes 42 3.2.7 Serum Protection Assay of Polyplexes 42 3.2.8 Cytotoxicity of PG4.5-DETA and PG4.5-TEPA 42 3.2.9 Cellular Uptake of Polyplexes 43 3.2.10 Intracellular Distribution of Polyplexes 44 3.3 Results and Discussion 44 3.3.1 Synthesis and Characterization of PG4.5-DETA and PG4.5-TEPA 44 3.3.2 Binding Ability of PG4.5-DETA and PG4.5-TEPA to siRNA 48 3.3.3 Hydrodynamic Diameter and Surface Charge of Polyplexes 49 3.3.4 Morphology of PG4.5-DETA and PG4.5-TEPA Polyplexes 50 3.3.5 Heparin-induced siRNA Release 51 3.3.6 Serum Stability of Polyplexes 52 3.3.7 Cytotoxicity of PG4.5-DETA and PG4.5-TEPA 53 3.3.8 Cellular Uptake of PG4.5-DETA and PG4.5-TEPA Polyplexes 55 3.3.9 Intracellular Biodistribution of PG4.5 DETA and PG4.5-TEPA Polyplexes 56 3.4 Conclusions 58 CHAPTER – 4 59 4. Biotin Functionalized Dendritic Nanoparticle to Enhance Antiproliferative and Apoptotic Activity of Gemcitabine in cancer Treatment 59 4.1 Introduction 59 4.2 Experiments 61 4.2.1 Synthesis of PG4.5-DETA and PG4.5-DETA-BT 61 4.2.2 Preparation and Characterization of Gemcitabine-Loaded Nanoparticles 62 4.2.3 In vitro Release of Gemcitabine from PG4.5-DETA-BT/GEM Nanoparticle 64 4.2.4 Cellular Uptake of PG4.5-DETA-BT/GEM Nanoparticle 64 4.2.5 Cytotoxicity of PG4.5-DETA-BT/GEM Nanoparticle 65 4.2.6 In vitro Apoptosis Assay of PG4.5-DETA-BT/GEM Nanoparticle 65 4.3 Results and Discussion 66 4.3.1 Synthesis and Characterization of PG4.5-DETA and PG4.5-DETA-BT 66 4.3.2 Characterization of PG4.5-DETA-BT/GEM Nanoparticle 68 4.3.3 In vitro Release of Gemcitabine 71 4.3.4 Cellular Uptake of PG4.5-DETA-BT/GEM Nanoparticle 72 4.3.5 Cytotoxicity of PG4.5-DETA-BT/GEM Nanoparticle 74 4.3.6 Apoptosis Assay of PG4.5-DETA-BT/GEM Nanoparticle 75 4.4 Conclusions 76 CHAPTER – 5 78 5. Bioresponsive PAMAM Dendritic Nanoparticle Incorporated Hydrogel to Enhance Immunogenic Cell Death and Immune Response in Cancer Immunochemotherapy 78 5.1 Introduction 78 5.2 Methods 81 5.2.1 Synthesis of PADH 81 5.2.2 Synthesis of PAB 81 5.2.3 Synthesis of PADH-DOX and PAB-DOX 83 5.2.4 Synthesis of PCLA-PEG-PCLA triblock Copolymer 84 5.2.5 Preparation of Indoximod Loaded PAB-DOX Nanoparticles 85 5.2.6 Preparation of Gel/PAB-DOX/IND and Its Sol-Gel Phase Transition Diagram 85 5.2.7 Biodegradation of Hydrogel 85 5.2.8 Release Profile of DOX and IND from Nanoparticle and Hydrogel 86 5.2.9 Cellular Uptake of PAB-DOX/IND Nanoparticle 86 5.2.10 In vitro Cell Viability of PAB-DOX/IND Nanoparticle 87 5.2.11 In vitro Apoptosis Study of PAB-DOX/IND Nanoparticle 88 5.2.12 In Vivo Studies of Gel/PAB-DOX/IND 88 5.3 Results and Discussion 90 5.3.1 Synthesis and Characterizations of PADH, PAB and PAB-DOX 90 5.3.2 Physicochemical Characterization of PAB-DOX/IND Nanoparticles 94 5.3.3 Sol-Gel Phase Transition and Biodegradation of Gel/PAB-DOX/IND 95 5.3.4 In Vitro Releasing of DOX and IND from Nanoparticle and Hydrogel 96 5.3.5 In Vitro Cellular Uptake of PAB-DOX/IND Nanoparticle 97 5.3.6 In vitro Cell Viability of PAB-DOX/IND Nanoparticle 99 5.3.7 In vitro Apoptotic Effect of PAB-DOX/IND Nanoparticle 101 5.3.8 In Vivo Tumor Growth Inhibition Activity of Gel/PAB-DOX/IND 102 5.3.9 Histopathology and Immunohistochemistry (IHC) Analysis 105 5.3.10 Evaluation of Cytokines Expression 106 5.3.11 In vivo Systemic Toxicity Effect of Gel/PAB-DOX/IND 108 CHAPTER – 6 111 6. General Summary and Future Perspectives 111 6.1 General Summary 111 6.2 Future Perspectives 112 REFERENCES 114 APPENDIX 143

    [1] X. Chen, L.S. Mangala, C. Rodriguez-Aguayo, X. Kong, G. Lopez-Berestein, A.K. Sood, RNA interference-based therapy and its delivery systems, Cancer Metastasis Rev. 37 (2017) 107.
    [2] A. Torgovnick, B. Schumacher, DNA repair mechanisms in cancer development and therapy, Front Genet. 6 (2015) 157.
    [3] R. Jadia, C. Scandore, P. Rai, Nanoparticles for Effective Combination Therapy of Cancer, Int. J. Nanotechnol. Nanomed. 1 (2016)
    [4] V. Emuss, The Molecular Biology of Cancer, Br. J. Cancer 95 (2006) 1128-1128.
    [5] A. Raza, T. Rasheed, F. Nabeel, U. Hayat, M. Bilal, H.M.N. Iqbal, Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site Specific Release, Molecules 24 (2019).
    [6] F.M. Kievit, M. Zhang, Surface engineering of iron oxide nanoparticles for targeted cancer therapy, Acc. Chem. Res. 44 (2011) 853.
    [7] Y. Yin, C. Fu, M. Li, X. Li, M. Wang, L. He, L.M. Zhang, Y. Peng, A pH-sensitive hyaluronic acid prodrug modified with lactoferrin for glioma dual-targeted treatment, Mater Sci. Eng C Mater. Biol. Appl. 67 (2016) 159.
    [8] X. Jia, X. Zhao, K. Tian, T. Zhou, J. Li, R. Zhang, P. Liu, Fluorescent Copolymer- Based Prodrug for pH-Triggered Intracellular Release of DOX, Biomacromolecules 16(2015) 3624.
    [9] M.J. Sandker, A. Petit, E.M. Redout, M. Siebelt, B. Müller, P. Bruin, R. Meyboom, T. Vermonden, W.E. Hennink, H. Weinans, In situ forming acyl-capped PCLA-PEG-PCLA triblock copolymer based hydrogels, Biomaterials 34 (2013) 8002.
    [10] M. Ferrari, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer 5 (2005) 161.
    [11] K.B. Sutradhar, M.L. Amin, Nanotechnology in Cancer Drug Delivery and Selective Targeting, Nanotechnology 2014 (2014) 939378.
    [12] S.S. Suri, H. Fenniri, B. Singh, Nanotechnology-based drug delivery systems, J. Occup. Med. Toxicol. 2 (2007) 16.
    [13] L. Tao, J. Geng, G. Chen, Y. Xu, V. Ladmiral, G. Mantovani, D.M. Haddleton, Bioconjugation of biotinylated PAMAM dendrons to avidin, Chem. Commun (Camb) (2007) 3441.
    [14] E.-D. Leriche, C. Afonso, C.M. Lange, M.C. Grossel, G. Coadou, H. Oulyadi, C. Loutelier- Bourhis, Glycine-modified polyamidoamine dendrimers: synthesis and structural characterization using nuclear magnetic resonance, ion-mobility mass spectrometry and capillary electrophoresis, RSC Adv. 4 (2014) 1744.
    [15] S.V.K. Rompicharla, P. Kumari, H. Bhatt, B. Ghosh, S. Biswas, Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer, Int. J. Pharm. 557 (2019) 329.
    [16] F. Abedi-Gaballu, G. Dehghan, M. Ghaffari, R. Yekta, S. Abbaspour-Ravasjani, B. Baradaran, J. Ezzati Nazhad Dolatabadi, M.R. Hamblin, PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy, Appl Mater Today 12 (2018) 177.
    [17] S.L. Mekuria, T.A. Debele, H.-C. Tsai, PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents, RSC Adv 6 (2016) 63761.
    [18] M.L. Patil, M. Zhang, T.J.A.n. Minko, Multifunctional triblock nanocarrier (PAMAM- PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing, ACS Nano 5 (2011) 1877.
    [19] C.M.J. Hu, S. Aryal, L. Zhang, Nanoparticle-Assisted Combination Therapies for Effective Cancer Treatment, Ther Delivery 1 (2010) 323.
    [20] M.J. Heffernan, N. Murthy, Polyketal Nanoparticles: A New pH-Sensitive Biodegradable Drug Delivery Vehicle, Bioconjug Chem 16 (2005) 1340.
    [21] P. Kesharwani, K. Jain, N.K. Jain, Dendrimer as nanocarrier for drug delivery, Prog Polym Sci 39 (2014) 268.
    [22] N. Nateghian, N. Goodarzi, M. Amini, F. Atyabi, R. Dinarvand, Biotin/Folate-decorated Human Serum Albumin Nanoparticles of Docetaxel: Comparison of Chemically Conjugated Nanostructures and Physically Loaded Nanoparticles for Targeting of Breast Cancer, Chem Biol Drug Des 87 (2016) 69.
    [23] J. Singh, K. Jain, N.K. Mehra, N.K. Jain, Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers, Artif Cells Nanomed Biotechnol 44 (2016) 1626.
    [24] E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Dendrimers: synthesis, applications, and properties, Nanoscale Res Lett 9 (2014) 247.
    [25] M. Najlah, S. Freeman, M. Khoder, D. Attwood, A. D' Emanuele, In Vitro Evaluation of Third Generation PAMAM Dendrimer Conjugates, Molecules 22 (2017).
    [26] M.P. Ngugi, M.J. Njagi, CANCER: A MOLECULAR CURSE?, Int J Curr Pharm Res 7 (1970).
    [27] S. Marqus, E. Pirogova, T.J. Piva, Evaluation of the use of therapeutic peptides for cancer treatment, J Biomed Sci 24 (2017) 21.
    [28] J. Yokota, Tumor progression and metastasis, Carcinogenesis 21 (2000) 497.
    [29] S. Kanwal, Y. Fardini, P. Pagesy, T. N'Tumba-Byn, C. Pierre-Eugène, E. Masson, C. Hampe, T. Issad, O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells, PloS one 8 (2013) e69150.
    [30] S.D. Hursting, T.J. Slaga, S.M. Fischer, J. DiGiovanni, J.M. Phang, Mechanism-Based Cancer Prevention Approaches: Targets, Examples, and the Use of Transgenic Mice, JNCI: J Natl Cancer Inst 91 (1999) 215.
    [31] D. Hanahan, Robert A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell 144 (2011) 646.
    [32] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, 68 (2018) 394.
    [33] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020, 70 (2020) 7.
    [34] S. Singh, A. Singh, Current status of nanomedicine and nanosurgery, Anesth Essays Res 7 (2013) 237.
    [35] S.C. Hofferberth, M.W. Grinstaff, Y.L. Colson, Nanotechnology applications in thoracic surgery, Eur J Cardio-Thoracic Surg 50 (2016) 6.
    [36] S. Mali, Nanotechnology for surgeons, Indian J Surg 75 (2013) 485.
    [37] Y. Mi, Z. Shao, J. Vang, O. Kaidar-Person, A.Z. Wang, Application of nanotechnology to cancer radiotherapy, Cancer Nanotechnol 7 (2016) 11.
    [38] S. Jelveh, D.B. Chithrani, Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics, Cancers 3 (2011) 107.
    [39] K.M. Au, R. Balhorn, M.C. Balhorn, S.I. Park, A.Z. Wang, High-Performance Concurrent Chemo-Immuno-Radiotherapy for the Treatment of Hematologic Cancer through Selective High-Affinity Ligand Antibody Mimic-Functionalized Doxorubicin-Encapsulated Nanoparticles, ACS Cent Sci 5 (2019) 122.
    [40] J. Lu, X. Liu, Y.P. Liao, F. Salazar, B. Sun, W. Jiang, J. Jiang, X. Wang, A.M. Wu, H. Meng, A.E. Nel, Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression, Nat Commun 8 (2017) 1811.
    [41] L. Jiang, Y. Ding, X. Xue, S. Zhou, C. Li, X. Zhang, X. Jiang, Entrapping multifunctional dendritic nanoparticles into a hydrogel for local therapeutic delivery and synergetic immunochemotherapy, Nano Res 11 (2018) 6062.
    [42] D.J. Irvine, E.L. Dane, Enhancing cancer immunotherapy with nanomedicine, Nat. Rev. Immunol. (2020) 73.
    [43] S. Lim, J. Park, M.K. Shim, W. Um, H.Y. Yoon, J.H. Ryu, D.-K. Lim, K. Kim, Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy, Theranostics 9 (2019) 7906.
    [44] W. Sang, Z. Zhang, Y. Dai, X. Chen, Recent advances in nanomaterial-based synergistic combination cancer immunotherapy, Chem Soc Rev 48 (2019) 3771.
    [45] M. Liu, X. Wang, L. Wang, X. Ma, Z. Gong, S. Zhang, Y. Li, Targeting the IDO1 pathway in cancer: from bench to bedside, J Hematol Oncol 11 (2018) 100.
    [46] Y. Zhao, Q. Song, Y. Yin, T. Wu, X. Hu, X. Gao, G. Li, S. Tan, Z. Zhang, Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti- tumor effects, J Control Release 269 (2018) 322.
    [47] G.A.R. Gonçalves, R.d.M.A. Paiva, Gene therapy: advances, challenges and perspectives, Einstein (Sao Paulo) 15 (2017) 369.
    [48] C. Scholz, E. Wagner, Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers, J Control Release 161 (2012) 554.
    [49] S. Mali, Delivery systems for gene therapy, Indian J Hum Genet 19 (2013) 3.
    [50] Y.K. Sung, S.W. Kim, Recent advances in the development of gene delivery systems, Biomater Res 23 (2019) 8.
    [51] M.K. Riley, W. Vermerris, Recent Advances in Nanomaterials for Gene Delivery-A Review, Nanomaterials (Basel, Switzerland) 7 (2017) 94.
    [52] G. Arya, M. Vandana, S. Acharya, S.K. Sahoo, Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy, Nanomedicine 7 (2011) 859.
    [53] A. Jurj, C. Braicu, L.-A. Pop, C. Tomuleasa, C.D. Gherman, I. Berindan-Neagoe, The new era of nanotechnology, an alternative to change cancer treatment, Drug Des Devel Ther 11 (2017) 2871.
    [54] M. Parsian, G. Unsoy, P. Mutlu, S. Yalcin, A. Tezcaner, U. Gunduz, Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug, Eur J Pharmacol 784 (2016) 121.
    [55] G.H. Shin, J.T. Kim, H.J.J.T.i.f.s. Park, technology, Recent developments in nanoformulations of lipophilic functional foods, Trends Food Sci Technol 46 (2015) 144.
    [56] N. Taghavi P.A, P. Mutlu, R. Khodadust, U. Gunduz, Poly(amidoamine) (PAMAM) Nanoparticles: Synthesis and Biomedical Applications, J Biol Chem 41 (3) (2013) 289.
    [57] C.L. Waite, C.M.J.B.c. Roth, PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma, Bioconjug chem 20 (2009) 1908.
    [58] R. Misra, S. Acharya, S.K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy, Drug Discov Today 15 (2010) 842.
    [59] M.L. Leite, N.B. da Cunha, F.F. Costa, Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment, Pharmacol Ther 183(2018) 160.
    [60] E. Larrañeta, S. Stewart, M. Ervine, R. Al-Kasasbeh, R.F.J.J.o.f.b. Donnelly, Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications, J Funct Biomater 9 (2018) 13.
    [61] V.H.G. Phan, E. Lee, J.H. Maeng, T. Thambi, B.S. Kim, D. Lee, D.S. Lee, Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel, RSC Adv 6 (2016) 41644.
    [62] F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J Controlled Release 148 (2010) 135.
    [63] K.B. Sutradhar, M.L.J.I.n. Amin, Nanotechnology in cancer drug delivery and selective targeting, nanotechnology 2014 (2014) 141.
    [64] D. Gonciar, T. Mocan, C.T. Matea, C. Zdrehus, O. Mosteanu, L. Mocan, T. Pop, Nanotechnology in metastatic cancer treatment: Current Achievements and Future Research Trends, J Cancer 10 (2019) 1358.
    [65] S.G. Klochkov, M.E. Neganova, V.N. Nikolenko, K. Chen, S.G. Somasundaram, C.E. Kirkland, G. Aliev, Implications of nanotechnology for the treatment of cancer: Recent advances, Semin Cancer Biol (2019) 89.
    [66] W.H. Gmeiner, S. Ghosh, Nanotechnology for cancer treatment, Nanotechnol Rev 3 (2015) 111.
    [67] J. Zhu, Y. Niu, Y. Li, Y. Gong, H. Shi, Q. Huo, Y. Liu, Q. Xu, Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges, J Mater Chem B 5 (2017) 1339.
    [68] J. Yu, X. Chu, Y. Hou, Stimuli-responsive cancer therapy based on nanoparticles, Chem Commun (Camb) 50 (2014) 11614.
    [69] S. Bhatnagar, V.V. Venuganti, Cancer Targeting: Responsive Polymers for Stimuli Sensitive Drug Delivery, J Nanosci Nanotechnol 15 (2015) 1925.
    [70] N.V. Rao, H. Ko, J. Lee, J.H. Park, Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy, Front Bioeng Biotechnol 6 (2018) 110.
    [71] D. Liu, F. Yang, F. Xiong, N. Gu, The Smart Drug Delivery System and Its Clinical Potential, Theranostics 6 (2016) 1306.
    [72] C.M. Wells, M. Harris, L. Choi, V.P. Murali, F.D. Guerra, J.A. Jennings, Stimuli Responsive Drug Release from Smart Polymers, J Funct Biomater 10 (2019) 111.
    [73] D. Luong, P. Kesharwani, M.C.I. Mohd Amin, U. Gupta, K. Greish, A.K. Iyer, PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery, Acta Biomaterialia 43 (2016) 14.
    [74] M.G. Lancina, 3rd, H. Yang, Dendrimers for Ocular Drug Delivery, Can J Chem 95 (2017) 897.
    [75] B.K. Nanjwade, H.M. Bechra, G.K. Derkar, F.V. Manvi, V.K. Nanjwade, Dendrimers: Emerging polymers for drug-delivery systems, Pharm Acta Helv 38 (2009) 185.
    [76] L. Palmerston Mendes, J. Pan, V.P. Torchilin, Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy, Molecules (Basel) 22 (2017) 1401.
    [77] D.M. Shadrack, E.B. Mubofu, S.S. Nyandoro, Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement, Int J Mol Sci 16 (2015) 26363.
    [78] A. Singh, P. Trivedi, N.K. Jain, Advances in siRNA delivery in cancer therapy, Artif Cells Nanomed Biotechnol 46 (2017) 274.
    [79] B. Yavuz, S. Bozdağ Pehlivan, N. Ünlü, Dendrimeric Systems and Their Applications in Ocular Drug Delivery, Sci Worl J 2013 (2013) 732340.
    [80] R.I. Castro, O. Forero-Doria, L. Guzmán, Perspectives of Dendrimer-based Nanoparticles in Cancer Therapy, An Acad Bras Cienc. 90 (2018) 2331.
    [81] V.K. Yellepeddi, H. Ghandehari, Poly(amido amine) dendrimers in oral delivery, Tissue barriers 4 (2016) e1173773.
    [82] M.R. Carvalho, R.L. Reis, J.M. Oliveira, Dendrimer nanoparticles for colorectal cancer applications, J Mater Chem B 8 (2020) 1128.
    [83] G. Nyitrai, O. Kékesi, I. Pál, P. Keglevich, Z. Csíki, P. Fügedi, Á. Simon, I. Fitos, K. Németh, J. Visy, G. Tárkányi, J. Kardos, Assessing toxicity of polyamidoamine dendrimers by neuronal signaling functions, Nanotoxicology 6 (2012) 576.
    [84] M.J. Prieto, N.E. del Rio Zabala, C.H. Marotta, H. Carreno Gutierrez, R. Arevalo Arevalo, N.S. Chiaramoni, S. del Valle Alonso, Optimization and in vivo toxicity evaluation of G4.5 PAMAM dendrimer-risperidone complexes, PLoS One 9 (2014) e90393.
    [85] D.A. Tomalia, Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis, Soft Matter 6 (2010) 456.
    [86] A.S. Chauhan, M. Kaul, Engineering of “critical nanoscale design parameters” (CNDPs) in PAMAM dendrimer nanoparticles for drug delivery applications, J Nanoparticle Res 20 (2018) 226.
    [87] J. Li, H. Liang, J. Liu, Z. Wang, Poly (amidoamine) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy, Int J Pharm 546 (2018) 215.
    [88] J. Liu, J. Li, N. Liu, N. Guo, C. Gao, Y. Hao, L. Chen, X. Zhang, In vitro studies of phospholipid-modified PAMAM-siMDR1 complexes for the reversal of multidrug resistance in human breast cancer cells, Int J Pharm 530 (2017) 291.
    [89] S.Y. Wu, H.Y. Chou, C.H. Yuh, S.L. Mekuria, Y.C. Kao, H.C. Tsai, Radiation-Sensitive Dendrimer-Based Drug Delivery System, Adv Sci (Weinh) 5 (2018) 1700339.
    [90] J. Qiu, L. Kong, X. Cao, A. Li, P. Wei, L. Wang, S. Mignani, A.-M. Caminade, J.-P. Majoral, X. Shi, Enhanced Delivery of Therapeutic siRNA into Glioblastoma Cells Using Dendrimer-Entrapped Gold Nanoparticles Conjugated β-Cyclodextrin, Nanomaterials (Basel, Switzerland) 8 (2018) 131.
    [91] E. Bastien, R. Schneider, S. Hackbarth, D. Dumas, J. Jasniewski, B. Roder, L. Bezdetnaya, H.P. Lassalle, PAMAM G4.5-chlorin e6 dendrimeric nanoparticles for enhanced photodynamic effects, Photochem Photobiol Sci 14 (2015) 2203.
    [92] D.J. Bharali, M. Khalil, M. Gurbuz, T.M. Simone, S.A. Mousa, Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers, Int J Nanomed 4 (2009) 1.
    [93] J. Liu, C. Gu, E.B. Cabigas, K.D. Pendergrass, M.E. Brown, Y. Luo, M.E. Davis, Functionalized dendrimer-based delivery of angiotensin type 1 receptor siRNA for preserving cardiac function following infarction, Biomaterials 34 (2013) 3729.
    [94] S.L. Mekuria, T.A. Debele, H.-Y. Chou, H.-C. Tsai, IL-6 Antibody and RGD Peptide Conjugated Poly(amidoamine) Dendrimer for Targeted Drug Delivery of HeLa Cells, The J Mater Chem B 120 (2016) 123.
    [95] C. Koukiotis, I.D. Sideridou, Synthesis and characterization of latexes based on copolymers BA\MMA\DAAM and BA\MMA\VEOVA-10\DAAM and the corresponding 1K crosslinkable binder using the adipic acid dihydrazide as crosslinking agent, Prog Org Coat 69 (2010) 504.
    [96] M. Lee, J. Jeong, D. Kim, Intracellular Uptake and pH-Dependent Release of Doxorubicin from the Self-Assembled Micelles Based on Amphiphilic Polyaspartamide Graft Copolymers, Biomacromolecules 16 (2015) 136.
    [97] H. Uchida, K. Itaka, T. Nomoto, T. Ishii, T. Suma, M. Ikegami, K. Miyata, M. Oba, N. Nishiyama, K. Kataoka, Modulated Protonation of Side Chain Aminoethylene Repeats in N-Substituted Polyaspartamides Promotes mRNA Transfection, J Am Chem Soc 136 (2014) 12396.
    [98] B. Lu, C.F. Wang, D.Q. Wu, C. Li, X.Z. Zhang, R.X. Zhuo, Chitosan based oligoamine polymers: synthesis, characterization, and gene delivery, J Control Release 137 (2009) 54.
    [99] H. Uchida, K. Miyata, M. Oba, T. Ishii, T. Suma, K. Itaka, N. Nishiyama, K. Kataoka, Odd- even effect of repeating aminoethylene units in the side chain of N-substituted polyaspartamides on gene transfection profiles,J Am Chem Soc 133 (2011) 15524.
    [100] W.X. Ren, J. Han, S. Uhm, Y.J. Jang, C. Kang, J.H. Kim, J.S. Kim, Recent development of biotin conjugation in biological imaging, sensing, and target delivery, Chem Commun (Camb) 51 (2015) 10403.
    [101] S. Collina, New Perspectives in Cancer Therapy: The Biotin-Antitumor Molecule Conjugates, Med Chem (2014) 43.
    [102] A.D. Vadlapudi, R.K. Vadlapatla, A.K. Mitra, Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery, Curr Drug Targets 13 (2012) 994.
    [103] Y.-T. Chiang, Y.-T. Cheng, C.-Y. Lu, Y.-W. Yen, L.-Y. Yu, K.-S. Yu, S.-Y. Lyu, C.-Y. Yang, C.-L. Lo, Polymer–Liposome Complexes with a Functional Hydrogen-Bond Cross-Linker for Preventing Protein Adsorption and Improving Tumor Accumulation, Chem Mater 25 (2013) 4364.
    [104] J. Wang, Z. Lu, M.G. Wientjes, J.L.S. Au, Delivery of siRNA Therapeutics: Barriers and Carriers, The AAPS Journal 12 (2010) 492.
    [105] A. Gallas, C. Alexander, M.C. Davies, S. Puri, S. Allen, Chemistry and formulations for siRNA therapeutics, Chem Soc Rev 42 (2013) 7983.
    [106] R.W. Carthew, E.J. Sontheimer, Origins and Mechanisms of miRNAs and siRNAs, Cell 136 (2009) 642.
    [107] B. Landry, J. Valencia-Serna, H. Gul-Uludag, X. Jiang, A. Janowska-Wieczorek, J. Brandwein, H. Uludag, Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia, Mol Ther Nucleic Acids 4 (2015) e240.
    [108] T. Ahmadzada, G. Reid, D.R. McKenzie, Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer, Biophys Rev 10 (2018) 69.
    [109] J. Zhu, M. Qiao, Q. Wang, Y. Ye, S. Ba, J. Ma, H. Hu, X. Zhao, D. Chen, Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA, Biomaterials 162 (2018) 47.
    [110] F. Zahir-Jouzdani, F. Mottaghitalab, M. Dinarvand, F. Atyabi, siRNA delivery for treatment of degenerative diseases, new hopes and challenges, J Drug Deliv Sci Technol 45 (2018) 428.
    [111] A. Ohyama, T. Higashi, K. Motoyama, H. Arima, In Vitro and In Vivo Tumor-Targeting siRNA Delivery Using Folate-PEG-appended Dendrimer(G4)/α-Cyclodextrin Conjugates, Bioconjug Chem 27 (2016) 521.
    [112] K. Winnicka, M. Wroblewska, K. Sosnowska, H. Car, I. Kasacka, Evaluation of cationic polyamidoamine dendrimers' dermal toxicity in the rat skin model, Drug Des Devel Ther 9 (2015) 1367.
    [113] K. Urbiola, L. Blanco-Fernández, M. Ogris, W. Rödl, E. Wagner, C. Tros de Ilarduya, Novel PAMAM-PEG-Peptide Conjugates for siRNA Delivery Targeted to the Transferrin and Epidermal Growth Factor Receptors, J Pers Med 8 (2018) 145.
    [114] L. Xu, W. Shen, B. Wang, X. Wang, G. Liu, Y. Tao, R. Qi, Efficient siRNA Delivery Using PEG-conjugated PAMAM Dendrimers Targeting Vascular Endothelial Growth Factor in a CoCl2-induced Neovascularization Model in Retinal Endothelial Cells, Curr Drug Deliv 13 (2016) 590.
    [115] X.-x. Liu, P. Rocchi, F.-Q. Zheng, Z.-c. Liang, M. Gleave, J. Iovanna, L. Peng, PAMAM Dendrimers Mediate siRNA Delivery to Target Hsp27 and Produce Potent Antiproliferative Effects on Prostate Cancer Cells, Chem Med Chem 4 (2009) 1302.
    [116] J. Qiu, L. Kong, X. Cao, A. Li, P. Wei, L. Wang, S. Mignani, A.-M. Caminade, J.-P. Majoral, X. Shi, Enhanced Delivery of siRNA into Glioblastoma Cells Using Dendrimer Entrapped Gold Nanoparticles Conjugated with β-Cyclodextrin, Nanomaterials 8 (2018) 334.
    [117] M. Wang, Y. Cheng, Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery, Acta Biomaterialia 46 (2016) 204.
    [118] A.F.A. Mohammed, T. Higashi, K. Motoyama, A. Ohyama, R. Onodera, K.A. Khaled, H.A. Sarhan, A.K. Hussein, H. Arima, Targeted siRNA delivery to tumor cells by folate- PEG-appended dendrimer/glucuronylglucosyl-β-cyclodextrin conjugate, J Incl Phenom Macrocycl Chem 93 (2019) 41.
    [119] N. Taghavi Pourianazar, P. Mutlu, U. Gunduz, Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine, J Nanoparticle Res 16 (2014) 2342.
    [120] D. Yoyen-Ermis, K. Ozturk-Atar, M.A. Kursunel, C. Aydin, D. Ozkazanc, M.U. Gurbuz, A. Uner, M. Tulu, S. Calis, G. Esendagli, Tumor-Induced Myeloid Cells Are Reduced by Gemcitabine-Loaded PAMAM Dendrimers Decorated with Anti-Flt1 Antibody, Mol Pharm 15 (2018) 1526.
    [121] Y. Chang, N. Liu, L. Chen, X. Meng, Y. Liu, Y. Li, J. Wang, Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery, J Mater Chem 22 (2012) 9594.
    [122] T. Luo, C. Loira-Pastoriza, H.P. Patil, B. Ucakar, G.G. Muccioli, C. Bosquillon, R. Vanbever, PEGylation of paclitaxel largely improves its safety and anti-tumor efficacy following pulmonary delivery in a mouse model of lung carcinoma, J Controlled Release 239 (2016) 62.
    [123] X. He, C.S. Alves, N. Oliveira, J. Rodrigues, J. Zhu, I. Bányai, H. Tomás, X. Shi, RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells, Colloids Surf B Biointer 125 (2015) 82.
    [124] Y. Liu, Y. Ng, M.R. Toh, G.N.C. Chiu, Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer, J controlled release 220 (2015) 438.
    [125] X. Chen, L.S. Mangala, C. Rodriguez-Aguayo, X. Kong, G. Lopez-Berestein, A.K. Sood, RNA interference-based therapy and its delivery systems, Cancer Metastasis Rev 37 (2018) 107.
    [126] P.J. Roberts, C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer, Oncogene 26 (2007) 3291.
    [127] J. Li, S. Xue, Z.-W. Mao, Nanoparticle delivery systems for siRNA-based therapeutics, J Mater Chem B 4 (2016) 6620.
    [128] G. Cavallaro, C. Sardo, E.F. Craparo, B. Porsio, G. Giammona, Polymeric nanoparticles for siRNA delivery: Production and applications, Int J Pharm 525 (2017) 313.
    [129] L. Du, J. Zhou, L. Meng, X. Wang, C. Wang, Y. Huang, S. Zheng, L. Deng, H. Cao, Z. Liang, A. Dong, Q. Cheng, The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy, Theranostics 7 (2017) 3432.
    [130] M. Gujrati, A. Malamas, T. Shin, E. Jin, Y. Sun, Z.R. Lu, Multifunctional cationic lipid- based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release, Mol Pharm 11 (2014) 2734.
    [131] G. Navarro, R.R. Sawant, S. Essex, C. Tros de Ilarduya, V.P. Torchilin, Phospholipid- polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery, Drug Deliv Transl Res 1 (2011) 25.
    [132] J.A. Edson, D. Ingato, S. Wu, B. Lee, Y.J. Kwon, Aqueous-Soluble, Acid-Transforming Chitosan for Efficient and Stimuli-Responsive Gene Silencing, Biomacromolecules 19 (2018) 1508.
    [133] W. Shen, Q. Wang, Y. Shen, X. Gao, L. Li, Y. Yan, H. Wang, Y. Cheng, Green Tea Catechin Dramatically Promotes RNAi Mediated by Low-Molecular-Weight Polymers, ACS Cent Sci 4 (2018) 1326.
    [134] H. Chang, J. Zhang, H. Wang, J. Lv, Y. Cheng, A Combination of Guanidyl and Phenyl Groups on Dendrimer Enables Efficient siRNA and DNA Delivery, Biomacromolecules 18 (2017) 2371.
    [135] A. Aigner, D.J.N. Kögel, Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Nanomedicine 13 (2018) 89.
    [136] F. Abedi-Gaballu, G. Dehghan, M. Ghaffari, R. Yekta, S. Abbaspour-Ravasjani, B. Baradaran, M.R. Hamblin, PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy, Appl Mater Today 12 (2018) 177.
    [137] A.K. Varkouhi, M. Scholte, G. Storm, H.J. Haisma, Endosomal escape pathways for delivery of biologicals, J Controlled Release 151 (2011) 220.
    [138] M.L. Patil, M. Zhang, S. Betigeri, O. Taratula, H. He, T. Minko, Surface-Modified and Internally Cationic Polyamidoamine Dendrimers for Efficient siRNA Delivery, Bioconjug Chem 19 (2008) 1396.
    [139] Y. Zeng, Y. Kurokawa, T.-T. Win-Shwe, Q. Zeng, S. Hirano, Z. Zhang, H. Sone, Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells, J Toxicol Sci 41 (2016) 351.
    [140] P. Kesharwani, S. Banerjee, U. Gupta, M.C.I. Mohd Amin, S. Padhye, F.H. Sarkar A.K. Iyer, PAMAM dendrimers as promising nanocarriers for RNAi therapeutics, Mater Today 18 (2015) 565.
    [141] G. Nyitrai, O. Kekesi, I. Pál, P. Keglevich, Z. Csíki, P. Fügedi, Á. Simon, I. Fitos, K. Németh, J. Visy, G. Tárkányi, J. Kardos, Assessing toxicity of polyamidoamine dendrimers by neuronal signaling functions, Nanotoxicology 6 (2011) 576.
    [142] Cheng Yiyun. Fluorine-containing polymer gene carrier. Acta Polymerica Sinica, 8(2017) 1234
    [143] M.J. Prieto, N.E. del Rio Zabala, C.H. Marotta, H. Carreño Gutierrez, R. Arévalo Arévalo, N.S. Chiaramoni, S. del Valle Alonso, Optimization and in vivo toxicity evaluation of G4.5 PAMAM dendrimer-risperidone complexes, PloS one 9 (2014) e90393.
    [144] Arnida, N. Nishiyama, N. Kanayama, W.D. Jang, Y. Yamasaki, K. Kataoka, PEGylated gene nanocarriers based on block catiomers bearing ethylenediamine repeating units directed to remarkable enhancement of photochemical transfection, J Control Release 115 (2006) 208.
    [145] Y.Q. Wang, Y.X. Sun, X.L. Hong, X.Z. Zhang, G.Y. Zhang, Poly(methyl methacrylate)- graft-oligoamines as low cytotoxic and efficient nonviral gene vectors, Mol Biosyst 6 (2010) 256.
    [146] A. Jarzębińska, T. Pasewald, J. Lambrecht, O. Mykhaylyk, L. Kümmerling, P. Beck, G. Hasenpusch, C. Rudolph, C. Plank, C. Dohmen, A Single Methylene Group in Oligoalkylamine-Based Cationic Polymers and Lipids Promotes Enhanced mRNA Delivery, Angew Chem Int Ed Engl 55 (2016) 9591.
    [147] Z. Zhou, Q. Zhang, M. Zhang, H. Li, G. Chen, C. Qian, D. Oupicky, M. Sun, ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy, Theranostics 8 (2018) 4604.
    [148] M. Jafari, W. Xu, R. Pan, C.M. Sweeting, D.N. Karunaratne, P. Chen, Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery, PloS one 9 (2014) e97797.
    [149] M.A. Raja, H. Katas, T. Jing Wen, Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers, PLoS One 10 (2015) e0128963.
    [150] I.J. Majoros, B. Keszler, S. Woehler, T. Bull, J.R. Baker, Acetylation of Poly(amidoamine) Dendrimers, Macromolecules 36 (2003) 5526.
    [151] H. Ben, A.J.J.E. Ragauskas, Fuels, Heteronuclear single-quantum correlation–nuclear magnetic resonance (HSQC–NMR) fingerprint analysis of pyrolysis oils, J Energy 25 (2011) 5791.
    [152] M.V. Gomez, J. Guerra, A.H. Velders, R.M. Crooks, NMR characterization of fourth generation PAMAM dendrimers in the presence and absence of palladium dendrimer- encapsulated nanoparticles, J Am Chem Soc 131 (2009) 341.
    [153] J. Hu, T. Xu, Y. Cheng, NMR Insights into Dendrimer-Based Host–Guest Systems, Chem Rev 112 (2012) 3856.
    [154] J. Ma, S. Kala, S. Yung, T.M. Chan, Y. Cao, Y. Jiang, X. Liu, S. Giorgio, L. Peng, A.S.T. Wong, Blocking Stemness and Metastatic Properties of Ovarian Cancer Cells by Targeting p70(S6K) with Dendrimer Nanovector-Based siRNA Delivery, Mol Ther 26 (2018) 70.
    [155] V.P. Chauhan, R.K. Jain, Strategies for advancing cancer nanomedicine, Nat Mater 12 (2013) 958.
    [156] P. Tambe, P. Kumar, Y.A. Karpe, K.M. Paknikar, V. Gajbhiye, Triptorelin Tethered Multifunctional PAMAM-Histidine-PEG Nanoconstructs Enable Specific Targeting and Efficient Gene Silencing in LHRH Overexpressing Cancer Cells, ACS Appl Mater Interfaces 9 (2017) 35562.
    [157] M. Elsayed, V. Corrand, V. Kolhatkar, Y. Xie, N.H. Kim, R. Kolhatkar, O.M. Merkel, Influence of oligospermines architecture on their suitability for siRNA delivery, Biomacromolecules 15 (2014) 1299.
    [158] Y.-W. Won, S.-M. Yoon, K.-M. Lee, Y.-H. Kim, Poly(oligo-D-arginine) with internal disulfide linkages as a cytoplasm-sensitive carrier for siRNA delivery, Molecular therapy : J Am Soc Gene Ther 19 (2011) 372.
    [159] T. Ganbold, H. Baigude, Design of Mannose-Functionalized Curdlan Nanoparticles for Macrophage-Targeted siRNA Delivery, ACS Appl Mater Interfaces 10 (2018) 14463.
    [160] R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N.B. McKeown, A. D’Emanuele, The influence of surface modification on the cytotoxicity of PAMAM dendrimers, Int J Pharm 252 (2003) 263.
    [161] L. Guo, C. Wang, C. Yang, X. Wang, T. Zhang, Z. Zhang, H. Yan, K. Liu, Morpholino terminated dendrimer shows enhanced tumor pH-triggered cellular uptake, prolonged circulation time, and low cytotoxicity, Polymer 84 (2016) 189.
    [162] N. Khatri, D. Baradia, I. Vhora, M. Rathi, A. Misra, Development and characterization of siRNA lipoplexes: Effect of different lipids, in vitro evaluation in cancerous cell lines and in vivo toxicity study, AAPS Pharm Sci Tech 15 (2014) 1630.
    [163] C. Zhang, T. An, D. Wang, G. Wan, M. Zhang, H. Wang, S. Zhang, R. Li, X. Yang, Y. Wang, Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(beta-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma, J Control Release 226 (2016) 193.
    [164] Q. Yuan, W.A. Yeudall, H. Yang, PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery, Biomacromolecules 11 (2010) 1940.
    [165] J. Luo, N.L. Solimini, S.J. Elledge, Principles of cancer therapy: oncogene and oncogene addiction, Cell 136 (2009) 823.
    [166] C.R. Patra, R. Bhattacharya, E. Wang, A. Katarya, M. Muders, S. Wang, S.L. Safgren, J.M. Reid, M.M. Ames, P. Mukherjee, D. Mukhopadhyay, Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent, Cancer Research 68 (2008) 1970.
    [167] L. Lin, Y. Fan, F. Gao, L. Jin, D. Li, W. Sun, F. Li, P. Qin, Q. Shi, X. Shi, L. Du, UTMD- Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy, Theranostic 8 (2018) 1923.
    [168] K. Derakhshandeh, S. Fathi, Role of chitosan nanoparticles in the oral absorption of Gemcitabine, Int J Pharm 437 (2012) 172.
    [169] L.R. Jaidev, U.M. Krishnan, S. Sethuraman, Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy, Mater Sci Eng C Mater Biol. Appl 47 (2015) 40.
    [170] D.H. Kim, Y. Guo, Z. Zhang, J. Nicolai, R.A. Omary, A.C. Larson, Temperature-sensitive magnetic drug carriers for concurrent gemcitabine chemohyperthermia, Adv Healthc Mater 3 (2014) 714.
    [171] G.R. Iglesias, F. Reyes-Ortega, B.L. Checa Fernandez, Á.V. Delgado, Hyperthermia Triggered Gemcitabine Release from Polymer-Coated Magnetite Nanoparticles, Polymers 10 (2018) 269.
    [172] X. Yu, Y. Di, C. Xie, Y. Song, H. He, H. Li, X. Pu, W. Lu, D. Fu, C. Jin, An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line, Int J Nanomedicine 10 (2015) 6825.
    [173] C. Wang, J. Wang, X. Zhang, S. Yu, D. Wen, Q. Hu, Y. Ye, H. Bomba, X. Hu, Z. Liu, G. Dotti, Z. Gu, In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy, Sci Transl Med 10 (2018) eaan3682.
    [174] R. Nahire, M.K. Haldar, S. Paul, A.H. Ambre, V. Meghnani, B. Layek, K.S. Katti, K.N. Gange, J. Singh, K. Sarkar, S. Mallik, Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells, Biomaterials 35 (2014) 6482.
    [175] Z. Chen, Y. Zheng, Y. Shi, Z. Cui, Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles, Int J nanomedicine 13 (2018) 319.
    [176] H.F. Darge, A.T. Andrgie, E.Y. Hanurry, Y.S. Birhan, T.W. Mekonnen, H.-Y. Chou, W.-H. Hsu, J.-Y. Lai, H.-C. Tsai, Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy, Int J Pharm 572 (2019) 118799.
    [177] S. Yalçın, M. Erkan, G. Ünsoy, M. Parsian, J. Kleeff, U. Gündüz, Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines, Biomed Pharmacother 68 (2014) 737.
    [178] M. Parsian, P. Mutlu, S. Yalcin, A. Tezcaner, U. Gunduz, Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery, Intl J Pharm 515 (2016) 104.
    [179] T.W. Mekonnen, Y.S. Birhan, A.T. Andrgie, E.Y. Hanurry, H.F. Darge, H.-Y. Chou, J.-Y. Lai, H.-C. Tsai, J.M. Yang, Y.-H. Chang, Encapsulation of gadolinium ferrite nanoparticle in generation 4.5 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field, Colloids and Surf B: Biointerfaces 184 (2019) 110531.
    [180] F. Mottaghitalab, M. Kiani, M. Farokhi, S.C. Kundu, R.L. Reis, M. Gholami, H. Bardania, R. Dinarvand, P. Geramifar, D. Beiki, F. Atyabi, Targeted Delivery System Based on Gemcitabine-Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy, ACS Appl Mater Interfaces 9 (2017) 31600.
    [181] K.D. Addisu, W.-H. Hsu, B.Z. Hailemeskel, A.T. Andrgie, H.-Y. Chou, C.-H. Yuh, J.-Y. Lai, H.-C. Tsai, Mixed Lanthanide Oxide Nanoparticles Coated with Alginate-Polydopamine as Multifunctional Nanovehicles for Dual Modality: Targeted Imaging and Chemotherapy, ACS Biomater Sci Eng 5 (2019) 5453.
    [182] L. Uram, A. Filipowicz, M. Misiorek, N. Pienkowska, J. Markowicz, E. Walajtys- Rode, S. Wolowiec, Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines, Eur J Pharm Sci 124 (2018) 1.
    [183] M. Liu, B. Wang, C. Guo, X. Hou, Z. Cheng, D. Chen, Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy, Drug Deliv 26 (2019) 1002.
    [184] J. Luo, X. Meng, J. Su, H. Ma, W. Wang, L. Fang, H. Zheng, Y. Qin, T. Chen, Biotin Modified Polylactic- co-Glycolic Acid Nanoparticles with Improved Antiproliferative Activity of 15,16-Dihydrotanshinone I in Human Cervical Cancer Cells, J Agric Food Chem 66 (2018) 9219.
    [185] S. Maiti, P. Paira, Biotin conjugated organic molecules and proteins for cancer therapy: A review, Eur J Med Chem 145 (2018) 206.
    [186] S. Chen, X. Zhao, J. Chen, J. Chen, L. Kuznetsova, S.S. Wong, I. Ojima, Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release, Bioconjug Chem 21 (2010) 979.
    [187] S.Y. Kim, S.H. Cho,L.-Y. Chu, Biotin-conjugated block copolymeric nanoparticles as tumor-targeted drug delivery systems, Macromol Res 15 (2007) 646.
    [188] L. Kou, Y.D. Bhutia, Q. Yao, Z. He, J. Sun, V. Ganapathy, Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types, Front Pharmacol 9 (2018) 27.
    [189] Q. Luo, M. Jiang, L. Kou, L. Zhang, G. Li, Q. Yao, L. Shang, Y. Chen, Ascorbate conjugated nanoparticles for oral delivery of therapeutic drugs via sodium-dependent vitamin C transporter 1 (SVCT1), Artif Cells Nanomed Biotechnol 46 (2018) 198.
    [190] N. Kanayama, S. Fukushima, N. Nishiyama, K. Itaka, W.D. Jang, K. Miyata, Y. Yamasaki, U.I. Chung, K. Kataoka, A PEG-based biocompatible block catiomer with high buffering capacity for the construction of polyplex micelles showing efficient gene transfer toward primary cells, Chem Med Chem 1 (2006) 439.
    [191] Y.S. Birhan, B.Z. Hailemeskel, T.W. Mekonnen, E.Y. Hanurry, H.F. Darge, A.T. Andrgie, H.-Y. Chou, J.-Y. Lai, G.-H. Hsiue, H.-C. Tsai, Fabrication of redox-responsive Bi(mPEG- PLGA)-Se2 micelles for doxorubicin delivery, Int J Pharm 567 (2019) 118486.
    [192] D. Wang, N. Liang, Y. Kawashima, F. Cui, P. Yan, S. Sun, Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel, J Mater Sci 54 (2019) 8613.
    [193] K. Samanta, S. Setua, S. Kumari, M. Jaggi, M.M. Yallapu, S.C. Chauhan, Gemcitabine Combination Nano Therapies for Pancreatic Cancer, Pharmaceutics 11 (2019) 574.
    [194] A. Pourjavadi, Z.M. Tehrani, Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA): A pH-sensitive carrier for gemcitabine delivery, Mater Sci Eng C 61 (2016) 782.
    [195] W. Bao, R. Liu, Y. Wang, F. Wang, G. Xia, H. Zhang, X. Li, H. Yin, B. Chen, PLGA-PLL- PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway, Int J nanomedicine 10 (2015) 557.
    [196] J. Turkson, Cancer drug discovery and anticancer drug development, The Molecular Basis of Human Cancer, Springer (2017) 695.
    [197] M. Zheng, W. Tao, Y. Zou, O.C. Farokhzad, B. Shi, Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy, Trends Biotechnol 36 (2018) 562.
    [198] W. Sang, Z. Zhang, Y. Dai, X. Chen, Recent advances in nanomaterial-based synergistic combination cancer immunotherapy, Chem Soc Rev 48 (2019) 3771.
    [199] J. Lu, X. Liu, Y.-P. Liao, X. Wang, A. Ahmed, W. Jiang, H. Meng, A.E. Nel, Breast Cancer Chemo-immunotherapy through Liposomal Delivery of Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway, ACS Nano 12 (2018) 11041.
    [200] Y. Xiong, Y. Wang, K. Tiruthani, Tumor immune microenvironment and nano immunotherapeutic in colorectal cancer, Nanomedicine 21 (2019) 102034.
    [201] S. Lim, J. Park, M.K. Shim, W. Um, H.Y. Yoon, J.H. Ryu, D.K. Lim, K. Kim, Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy, Theranostics 9 (2019) 7906.
    [202] Z. Berrong, M. Mkrtichyan, S. Ahmad, M. Webb, E. Mohamed, G. Okoev, A. Matevosyan, R. Shrimali, R. Abu Eid, S. Hammond, J.E. Janik, S.N. Khleif, Antigen-Specific Antitumor Responses Induced by OX40 Agonist Are Enhanced by the IDO Inhibitor Indoximod, Cancer Immunol Res 6 (2018) 201.
    [203] X.-X. Wang, S.-Y. Sun, Q.-Q. Dong, X.-X. Wu, W. Tang, Y.-Q. Xing, Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors, Med Chem Comm 10 (2019) 1740.
    [204] E. Fox, T. Oliver, M. Rowe, S. Thomas, Y. Zakharia, P.B. Gilman, A.J. Muller, G.C. Prendergast, Indoximod: An Immunometabolic Adjuvant That Empowers T Cell Activity in Cancer, Front Oncol 8 (2018) 370.
    [205] C. Maletzki, P. Scheinpflug, A. Witt, E. Klar, M. Linnebacher, Targeting Immune-Related Molecules in Cancer Therapy: A Comprehensive In Vitro Analysis on Patient Derived Tumor Models, Biomed Res Int 2019 (2019) 4938285.
    [206] A.T. Andrgie, Y.S. Birhan, T.W. Mekonnen, E.Y. Hanurry, H.F. Darge, R.-H. Lee, H.-Y. Chou, H.-C.J.P. Tsai, Redox-Responsive Heparin–Chlorambucil Conjugate Polymeric Prodrug for Improved Anti-Tumor Activity, Polymer 12 (2020) 43.
    [207] S.K. Rajendrakumar, S. Uthaman, C.S. Cho, I.K. Park, Trigger-Responsive Gene Transporters for Anticancer Therapy, Nanomaterials (Basel) 7 (2017).
    [208] Y.S. Birhan, H.F. Darge, E.Y. Hanurry, A.T. Andrgie, T.W. Mekonnen, H.-Y. Chou, J.-Y. Lai, H.-C. Tsai, Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox Responsive Drug Release, Pharmaceutics 12 (2020).
    [209] W. Luo, G. Wen, L. Yang, J. Tang, J. Wang, J. Wang, S. Zhang, F. Ma, L. Xiao, Y. Wang, Y. Li, Dual-targeted and pH-sensitive Doxorubicin Prodrug-Microbubble Complex with Ultrasound for Tumor Treatment, Theranostics 7 (2017) 452.
    [210] J. Li, P. Liu, Self‐Assembly of Drug–Drug Conjugates as Drug Self‐Delivery System for Tumor‐Specific pH‐Triggered Release, Part Part Syst Charact 36 (2019) 426.
    [211] C.-M.J. Hu, S. Aryal, L. Zhang, Nanoparticle-assisted combination therapies for effective cancer treatment, Ther. Delivery 1 (2010) 323.
    [212] M. Ghaffari, G. Dehghan, B. Baradaran, A. Zarebkohan, B. Mansoori, J. Soleymani, J. Ezzati Nazhad Dolatabadi, M.R. Hamblin, Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells, Colloids and Surf B: Biointerfaces 188 (2020) 110762.
    [213] M. Zhang, J. Zhu, Y. Zheng, S. Wang, S. Mignani, A.-M. Caminade, J.-P. Majoral, X. Shi, Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy, Pharmaceutics 10 (2018) 162.
    [214] P. Kesharwani, A.K. Iyer, Recent advances in dendrimer-based nanovectors for tumor targeted drug and gene delivery, Drug Discov Today 20 (2015) 536.
    [215] A.T. Andrgie, S.L. Mekuria, K.D. Addisu, B.Z. Hailemeskel, W.H. Hsu, H.C. Tsai, J.Y. Lai, Non-Anticoagulant Heparin Prodrug Loaded Biodegradable and Injectable Thermoresponsive Hydrogels for Enhanced Anti-Metastasis Therapy, Macromol Biosci 19 (2019) e1800409.
    [216] A.R. Chandrasekaran, C.Y. Jia, C.S. Theng, T. Muniandy, S. Muralidharan, D. So, In vitro studies and evaluation of metformin marketed tablets-Malaysia, J Appl Pharm Sci 1 (2011) 214.
    [217] Z. Wan, J. Sun, J. Xu, P. Moharil, J. Chen, J. Xu, J. Zhu, J. Li, Y. Huang, P. Xu, X. Ma, W. Xie, B. Lu, S. Li, Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy, Acta Biomaterialia 90 (2019) 300.
    [218] K. Haume, S. Rosa, S. Grellet, M.A. Śmiałek, K.T. Butterworth, A.V. Solov'yov, K.M. Prise, J. Golding, N.J. Mason, Gold nanoparticles for cancer radiotherapy: a review, Cancer nanotechnol 7 (2016) 8.
    [219] P. Sanpui, A. Chattopadhyay, S.S. Ghosh, Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier, ACS appl mater interfaces 3 (2011) 218.
    [220] E. Ahmadian, S.M. Dizaj, E. Rahimpour, A. Hasanzadeh, A. Eftekhari, H. Hosain zadegan, J. Halajzadeh, H. Ahmadian, Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line, Mater Sci Eng C 93 (2018) 465.
    [221] B. Balcı, A. Top, PEG and PEG-peptide based doxorubicin delivery systems containing hydrazone bond, J Polymer Res 25 (2018) 179.
    [222] P. Foroozandeh, A. Abdul Aziz, Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles, Nanoscale Res Lett 13 (2018) 297.
    [223] S. Behzadi, V. Serpooshan, W. Tao, M.A. Hamaly, M.Y. Alkawareek, E.C. Dreaden, D. Brown, A.M. Alkilany, O.C. Farokhzad, M. Mahmoudi, Cellular uptake of nanoparticles: journey inside the cell, Chem Soc Rev 46 (2017) 4218.
    [224] J. Mosquera, I. Garcia, L.M. Liz-Marzan, Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size, Acc Chem Res 51 (2018) 2305.
    [225] D.-D. Ma, W.-X.J.O. Yang, Engineered nanoparticles induce cell apoptosis: potential for cancer therapy, Oncotarget 7 (2016) 40882.
    [226] Y. Yang, X. Du, Q. Wang, J. Liu, E. Zhang, L. Sai, C. Peng, M.F. Lavin, A.J. Yeo, X. Yang, H. Shao, Z. Du, Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis, Int J Mol Med 44 (2019) 903.
    [227] X. Lu, J. Qian, H. Zhou, Q. Gan, W. Tang, J. Lu, Y. Yuan, C. Liu, In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells, Int J nanomedicine 6 (2011) 1889.
    [228] T. Watanabe, S. Gaedicke, E. Guffart, E. Firat, G. Niedermann, Adding Indoximod to Hypofractionated Radiotherapy with Anti-PD-1 Checkpoint Blockade Enhances Early NK and CD8+ T-Cell-Dependent Tumor Activity, Clin Cancer Res 26 (2020) 945.
    [229] Y. Zhao, Q. Song, Y. Yin, T. Wu, X. Hu, X. Gao, G. Li, S. Tan, Z. Zhang, Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti- tumor effects, J Control Release 269 (2018) 322

    無法下載圖示 全文公開日期 2025/10/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE