簡易檢索 / 詳目顯示

研究生: 胡接燊
Chieh-shen Hu
論文名稱: 開發幾丁聚醣與硫酸軟骨素奈米藥物遞送平台:以異硫氰酸螢光素結合胎牛血清白蛋白和阿黴素為模式藥物
Development of chondroitin sulfate chitosan nanoparticles drug delivery system platform: fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) and doxorubicin as model drugs
指導教授: 葉明功
Ming-kung Yeh
洪伯達
Po-da Hong
口試委員: 林文貞
Wen Jen Lin
廖愛禾
Ai-ho Liao
白孟宜
Meng-Yi Bai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 184
中文關鍵詞: 奈米粒子硫酸軟骨素幾丁聚醣細胞攝取細胞毒性抗腫瘤活性
外文關鍵詞: nanoparticles, doxorubicin, chondroitin sulfate, chitosan, Hepatoma, antitumor activity
相關次數: 點閱:281下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用離子交聯法(ionic gelation)製備硫酸軟骨素(chondroitin sulfate, CHS)與幾丁聚醣(chitosan, CS)奈米粒NPs(CHS-CS NPs)作為蛋白質或藥物之遞送載體。以異硫氰酸螢光素結合胎牛血清白蛋白(fluorescein isothiocyanate-conjugated bovine serum albumin, FITC-BSA)和阿黴素(doxorubicin, Dox)作為研究藥物。CHS-CS NPs及載藥後的物化特性和生物活性,包括釋放曲線,細胞毒性,細胞內吞化及體內的抗腫瘤效果等也加以評估。 CHS-CS NPs的粒徑(nm)及界面電位(mV)分別為(250±17,-29.8±2.9 及 262±15, 30.2±0.9); FITC-BSA-CHS-CS NPs的粒徑(nm)及界面電位(mV)分別為(268±15, 15.1±0.9及及283±10, -30.8±2.7); DOX-CHS-CS NPs的粒徑為369±77nm;界面電位為20.6±3.1 mV。經掃描共軛焦顯微鏡及流式細胞儀測定證實奈米粒可經細胞內吞作用進入胞內。細胞存活試驗之檢測結果顯示細胞與CHS-CS和FITC-BSA-CHS-CS NPs (0.1 mg/mL)培養72小時可保持95%以上的存活率。經使用Caco-2細胞體外穿透上皮運送實驗,研究顯示奈米粒能有效地輸送到Caco-2細胞內。其中正電的FITC-BSA-CHS-CS NPs的穿透上皮細胞運送的效能比負電荷的奈米粒佳可達1.83倍(24.8%/13.5%)。Dox-CHS-CS NPs體外釋放試驗證明,對於Dox-CHS-CS NPs的50%釋放時間為20小時。以兩種肝癌細胞(HepG2和HuH6)評估細胞毒性和細胞攝取效率,在60分鐘內細胞攝取Dox溶液和Dox-CHS-CS NPs具有顯著差異(P <0.01)。在活體試驗,以人肝癌細胞異種移植(xenograft) 裸鼠模式進行研究,Dox-CHS-CS NPs與阿黴素溶液比較可有效的減少裸鼠的體重損失和增加抗腫瘤生長抑制。本研究所開發的CHS-CS NPs可應用於運送親水性大分子和抗癌治療,是極具潛力的新型給藥載具系統。


    In this study, chondroitin sulfate (CHS)–chitosan (CS) nanoparticles (NPs) were prepared as a drug delivery carrier. FITC-BSA and Doxorubicin (Dox) were used as model drugs to be loaded in the CHS-CS NPs for further investigation.CHS-CS NPs were fabricated by ionic crosslinking of CS solution with CHS. The physicochemical properties and biological activities of the prepared CHS-CS NPs, such as the drug release profile, cell cytotoxicity, cellular internalization, and in vivo anti-tumor effects were evaluated.
    The CHS–CS NPs had mean sizes of 250±17, 238±6, 262±15nm, and zeta potentials of 16.6±2.6,-29.8±2.9, 30.2±0.9mV, mention in details at the begining. FITC-BSA-CHS-CS NPs had mean size of 268±15,283±10nm, and had zeta potential of 15.1±0.9,-30.8±2.7mV, respectively. Dox–CHS–CS NPs had a mean size of 369±77nm, and a zeta potential of 20.6±3.1mV. Cell viability assays in Caco-2 cell line demonstrated that the cells incubated with CHS-CS and FITC-BSA-loaded CHS-CS nanoparticles remained more than 95% viable for particles containing concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was tested by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded CHS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles
    In vitro release tests of Dox–CHS–CS NPs showed that the 50 % release time for the Dox–CHS–CS NPs was 20 h. Two hepatoma cell models, HepG2 and HuH6, were used for evaluating the cytotoxicity and cell uptake efficiency of the Dox–CHS–CS NPs. A significant difference was observed between doxorubicin solution and the Dox-CHS–CS NPs in the cellular uptake within 60 min (p<0.01). For the in vivo human xenograft nude mouse model, the Dox–CHS–CS NPs were more effective in tumor suppression than the Dox solution with less body weight loss.
    In conclusion, the CHS-CS nanoparticles fabricated in this study represents a potential novel delivery system for the transport of hydrophilic macromolecules and for the transport of anticancer drugs.

    目錄 摘要 I Abstract III 致謝 V 第1章 前言 1 1. 奈米科技之簡介 1 1.1奈米科技定義 1 1.2奈米科技的發展沿革 1 1.3奈米科技的主要應用 6 1.4奈米科技市場 6 2. 生醫材料之簡介 7 2.1生醫材料之分類 7 2.2幾丁聚醣簡介 10 2.2硫酸軟骨素之簡介 11 3. 藥物奈米遞送系統 15 3.1奈米載藥系統及其類型 15 3.2目前臨床應用範例 16 4. 阿黴素之簡介 19 5. 研究動機與目的 21 第2章 研究設計與方法 22 2.1研究設計 22 2.2研究架構 23 2.3 實驗流程 24 2.4藥物、試劑與設備 27 2.5奈米藥物遞送系統之製備及評估 32 2.6體外釋放試驗 41 2.7細胞毒性試驗 42 2.8細胞體外細胞吞噬試驗 45 2.9細胞穿透試驗 46 2.10抑制肝腫瘤之活性評估 48 第3章 實驗結果 52 3.1藥物遞送系統之製備與物化特性分析 52 3.2藥物遞送系統之體外釋放 59 3.3體外細胞存活及毒性分析 62 3.4體外細胞攝取之分析 66 3.5細胞穿透試驗 73 3.6體內抗腫瘤活性試驗 76 第4章 討論 79 4.1藥物遞送系統之製備與物化特性分析 79 4.2藥物遞送系統之體外釋放 80 4.3體外細胞存活及毒性分析 80 4.4細胞穿透試驗 82 4.5體內抗腫瘤活性試驗 84 4.6研究限制 84 第5章結論 85 參考資料 87 附錄 96 動物實驗申請計劃書 96 動物操作受訓證明 98 發表著作 99 獲獎榮譽 177

    參考資料
    [1] http://www.piecesetmaindoeuvre.com/IMG/pdf/OVNI_Valence.pdf(Accessed 12.02, 02/10/11).
    [2] 宋信文 陳 (2003) 生醫材料簡介. 生物技術概論, 第二章: 33-58.
    [3] Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8: 1305-1322.
    [4] Hu CS, Chiang CH, Hong PD, Yeh MK (2012) Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers. Int J Nanomedicine 7: 4861-4872.
    [5] Li P DY, Zhang JP, Wang AQ, Wei Q.. (2008) Chitosan–alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4: 221–228.
    [6] Patel NR, Rathi A, Mongayt D, Torchilin VP (2011) Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. International Journal of Pharmaceutics 416: 296-299.
    [7] Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7: 55-71.
    [8] Hallab NJ, Bundy KJ, O'Connor K, Clark R, Moses RL (1995) Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. J Long Term Eff Med Implants 5: 209-231.
    [9] Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan University Journal 11: 16.
    [10] Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100: 5-28.
    [11] Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, et al. (2013) Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 65: 865-879.
    [12] Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24: 979-993.
    [13] Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51: 81-96.
    [14] Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews 52: 117-126.
    [15] Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89: 151-165.
    [16] Lifeng Qi, Xu Z (2006) In vivo antitumor activity of chitosan nanoparticles. Bioorganic & Medicinal Chemistry Letters 16: 4243–4245.
    [17] Calvo P R-LC, Vila-Jato JL, Alonso MJ. (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. . Pharm Res 14: 1431–1436.
    [18] UebelhartD, Thonar EJMA, Delmas PD, ChantraineA, E V (1998) Effects of oral chondroitin sulfate on the progression of knee osteoarthritis: a pilot study.Osteoarthr Cartil 6(Suppl. A): 39–46..
    [19] Clegg DO, Reda DJ, Harris CL, Klein MA O, Dell JR, et al. (2006) Glucosamine, Chondroitin Sulfate, and the Two in Combination for Painful Knee Osteoarthritis. N Engl J Med 354: 795–808.
    [20] Yeh MK, Cheng KM, Hu CS, Huang YC, Young JJ (2011) Novel protein-loaded chondroitin sulfate-chitosan nanoparticles: preparation and characterization. Acta Biomater 7: 3804-3812.
    [21] Wang LF, Wang JM, YL C (2002) Insolubilization of sodium chondroitin sulfate by forming a semi-interpenetrating polymer network with acrylic acid: a potential carrier for colon-specific drug delivery. J Appl Polym Sci 85: 114–122.
    [22] Yang SJ, Lin FH, Tsai KC, Wei MF, Tsai HM, et al. (2010) Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug Chem 21: 679-689.
    [23] Yang SJ, Lin FH, Tsai HM, Lin CF, Chin HC, et al. (2011) Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials 32: 2174-2182.
    [24] Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA (2011) Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon. Int J Biol Macromol 48: 381-385.
    [25] Nagarwal RC, Singh PN, Kant S, Maiti P, Pandit JK (2010) Chitosan coated PLA nanoparticles for ophthalmic delivery: characterization, in-vitro and in-vivo study in rabbit eye. J Biomed Nanotechnol 6: 648-657.
    [26] Cheng MR, Li Q, Wan T, He B, Han J, et al. (2012) Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J Gastroenterol 18: 6076-6087.
    [27] Chen X, Zhu X, Li L, Xian G, Wang W, et al. (2013) Investigation on novel chitosan nanoparticle-aptamer complexes targeting TGF-beta receptor II. Int J Pharm 456: 499-507.
    [28] Cheng M, Chen H, Wang Y, Xu H, He B, et al. (2014) Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics. Int J Nanomedicine 9: 695-710.
    [29] Cheng M, Gao X, Wang Y, Chen H, He B, et al. (2013) Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar Drugs 11: 3517-3536.
    [30] Singh KH, Shinde UA (2011) Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmazie 66: 594-599.
    [31] Bulmer C, Margaritis A, Xenocostas A (2012) Encapsulation and controlled release of recombinant human erythropoietin from chitosan-carrageenan nanoparticles. Curr Drug Deliv 9: 527-537.
    [32] Miranda-Calderon JE, Medina-Torres L, Tinoco-Mendez M, Moreno-Esparza R, Ruiz-Ramirez L, et al. (2011) Characterization of physical interaction between Casiopeina III-ia and chitosan. Toward a Cas III-ia drug delivery system. Carbohydr Res 346: 121-126.
    [33] Venkatesan P, Puvvada N, Dash R, Prashanth Kumar BN, Sarkar D, et al. (2011) The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 32: 3794-3806.
    [34] Pramanik A, Laha D, Pramanik P, Karmakar P (2014) A novel drug "copper acetylacetonate" loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting. J Drug Target 22: 23-33.
    [35] Hu C-S, Tang S-L, Chiang C-H, Hosseinkhani H, Hong P-D, et al. (2014) Characterization and anti-tumor effects of chondroitin sulfate–chitosan nanoparticles delivery system. J Nanopart Res 16: 2672.
    [36] Yuan Q, Shah J, Hein S, Misra RD (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6: 1140-1148.
    [37] Jeong YI, Jin SG, Kim IY, Pei J, Wen M, et al. (2010) Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro. Colloids Surf B Biointerfaces 79: 149-155.
    [38] Garrait G, Beyssac E, Subirade M (2014) Development of a novel drug delivery system: chitosan nanoparticles entrapped in alginate microparticles. J Microencapsul 31: 363-372.
    [39] Shilpa J, Anju TR, Ajayan MS, Paulose CS (2014) Increased cortical neuronal survival during liver injury: effect of gamma aminobutyric acid and 5-HT chitosan nanoparticles. J Biomed Nanotechnol 10: 622-631.
    [40] Arya G, Vandana M, Acharya S, Sahoo SK (2011) Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine 7: 859-870.
    [41] Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN (2012) Chitosan-Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomedicine 7: 1851-1863.
    [42] Derakhshandeh K, Fathi S (2012) Role of chitosan nanoparticles in the oral absorption of Gemcitabine. Int J Pharm 437: 172-177.
    [43] Ding Y, Bian X, Yao W, Li R, Ding D, et al. (2010) Surface-potential-regulated transmembrane and cytotoxicity of chitosan/gold hybrid nanospheres. ACS Appl Mater Interfaces 2: 1456-1465.
    [44] Sharma S, Mukkur TK, Benson HA, Chen Y (2012) Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles. J Pharm Sci 101: 233-244.
    [45] Zhang N, Li J, Jiang W, Ren C, Li J, et al. (2010) Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm 393: 212-218.
    [46] Aghasadeghi MR, Heidari H, Sadat SM, Irani S, Amini S, et al. (2013) Lamivudine-PEGylated chitosan: a novel effective nanosized antiretroviral agent. Curr HIV Res 11: 309-320.
    [47] Mehrotra A, Nagarwal RC, Pandit JK (2011) Lomustine loaded chitosan nanoparticles: characterization and in-vitro cytotoxicity on human lung cancer cell line L132. Chem Pharm Bull (Tokyo) 59: 315-320.
    [48] Yamaguchi R, Arai Y, Kaneko T, Itoh T (1982) Utilization of partially N-succinylated derivatives of chitosan and glycolchitosan as supports for the immobilization of enzymes. Biotechnol Bioeng 24: 1081-1091.
    [49] Arunkumar R, Harish Prashanth KV, Baskaran V (2013) Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: characterization and bioavailability of lutein in vitro and in vivo. Food Chem 141: 327-337.
    [50] Abdelghany SM, Schmid D, Deacon J, Jaworski J, Fay F, et al. (2013) Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules 14: 302-310.
    [51] Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670: 372-383.
    [52] Lv PP, Wei W, Yue H, Yang TY, Wang LY, et al. (2011) Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 12: 4230-4239.
    [53] Song RF, Li XJ, Cheng XL, Fu AR, Wang YH, et al. (2014) Paclitaxel-loaded trimethyl chitosan-based polymeric nanoparticle for the effective treatment of gastroenteric tumors. Oncol Rep.
    [54] Battogtokh G, Ko YT (2014) Self-assembled Chitosan-Ceramide Nanoparticle for Enhanced Oral Delivery of Paclitaxel. Pharm Res.
    [55] Battogtokh G, Ko YT (2014) Self-assembled polymeric nanoparticle of PEGylated chitosan-ceramide conjugate for systemic delivery of paclitaxel. J Drug Target: 1-9.
    [56] Zhao SH, Wu XT, Guo WC, Du YM, Yu L, et al. (2010) N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a novel delivery system for parathyroid hormone-related protein 1-34. Int J Pharm 393: 268-272.
    [57] Bokharaei M, Margaritis A, Xenocostas A, Freeman DJ (2011) Erythropoietin encapsulation in chitosan nanoparticles and kinetics of drug release. Curr Drug Deliv 8: 164-171.
    [58] Cirpanli Y, Yerlikaya F, Ozturk K, Erdogar N, Launay M, et al. (2010) Comparative evaluation of in vitro parameters of tamoxifen citrate loaded poly(lactide-co-glycolide), poly(epsilon-caprolactone) and chitosan nanoparticles. Pharmazie 65: 867-870.
    [59] Barbieri S, Sonvico F, Como C, Colombo G, Zani F, et al. (2013) Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: loading, enzyme-trigger release and cell uptake. J Control Release 167: 276-283.
    [60] Zhao M, Li A, Chang J, Wang H, Liang S, et al. (2011) [Preparation of superparamagnetic paclitaxel nanoparticles from modified chitosan and their cytotoxicity against malignant brain glioma]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 28: 513-516.
    [61] Yousefpour P, Atyabi F, Dinarvand R, Vasheghani-Farahani E (2011) Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation. Daru 19: 367-375.
    [62] Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, et al. (2012) Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine 7: 5705-5718.
    [63] Tan Q, Tang H, Hu J, Hu Y, Zhou X, et al. (2011) Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int J Nanomedicine 6: 929-942.
    [64] Chung YI, Kim JC, Kim YH, Tae G, Lee SY, et al. (2010) The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. J Control Release 143: 374-382.
    [65] 葉明功、胡接燊、洪伯達 (2012) 奈米藥品在臨床上的運用. 藥學雜誌第11冊 28:2: 21-25.
    [66] 周志謂 (2008) 神奇的奈米鍊丹術. 科學發展 431: 16-22.
    [67] 李寶玉、顏寧、魏予全 (2006) 奈米生醫材料. 202-218.
    [68] Bawa B (2008) Nanoparticle- based Therapeutics in Humans: A Survey. . Nanotechnology Law & Business 5: 135-155.
    [69] Brayfield A, ed. (2013) "Doxorubicin". Martindale: The Complete Drug Reference. Pharmaceutical Press Retrieved 15 April 2014.
    [70] Rossi S, ed. (2013) Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust. ISBN 978-0-9805790-9-3. Edit.
    [71] DA G (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1;57(7): 727-741.
    [72] Steven E. Lipshultz. SRL, Suzanne M. Mone, Allen M. Goorin, Stephen E. Sallan, Stephen P. Sanders, E. John Orav, Richard D. Gelber, and Steven D. Colan (1995) Female Sex and Higher Drug Dose as Risk Factors for Late Cardiotoxic Effects of Doxorubicin Therapy for Childhood Cancer. N Engl J Med 332: 1738-1744.
    [73] Khouri MG HW, Risum N, Velazquez EJ, et al. (2014) Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiography to detect cardiac dysfunction in breast cancer patients treated with doxorubicin-containing adjuvant therapy. Breast Cancer Res Treat
    [74] Nihal Saad Elbialya MMM Ehrlich tumor inhibition using doxorubicin containing liposomes Saudi Pharmaceutical Journal.
    [75] Meng H XM, Xia T, et al., (2011) Use of Size and a Co-polymer Design Feature to Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS nano 5:5: 4131-4144.
    [76] Hongye Ye AAK, Xian Jun Loh (2014) Current treatment options and drug delivery systems as potential therapeutic agents for ovarian cancer: A review. Materials Science and Engineering: C Volume 45: Pages 609–619.
    [77] "DOXIL Product Information." Ortho Biotech Products, L.P. Retrieved on April 19, 2007. Archived September 21, 2007 at the Wayback Machine
    [78] Calvo P R-LC, Vila-Jato JL, Alonso MJ.. (1997) Novel hydrophilic chitosanpolyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63: 125–132.
    [79] Higuchi T (1963) Mechanism of Sustained-Action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J Pharm Sci 52: 1145-1149.
    [80] Brandenberger C, Mühlfeld C, Ali Z, Lenz A-G, Schmid O, et al. (2010) Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6: 1669-1678.
    [81] Chang ZY, Lu DW, Yeh MK, Chiang CH (2012) A novel high-content flow cytometric method for assessing the viability and damage of rat retinal ganglion cells. PLoS One 7: e33983.
    [82] Chang WK, Tai YJ, Chiang CH, Hu CS, Hong PD, et al. (2011) The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake. Int J Nanomedicine 6: 2403-2417.
    [83] Martijn WH Leenders MWN, Inne HM Borel Rinkes (2008) Mouse models in liver cancer research: A review of current literature. World J Gastroenterol 14:45: 6915-6923.
    [84] Guo Y KR, Omary RA, Yang GY, Larson AC (2010) Highly malignant intr-hepatic metastatic hepatocellular carcinoma in rats. Am J Transl Res 3: 114–120.
    [85] Denuziere A FD, Domard A. (1996) Chitosan–chondroitin sulphate and chitosan–hyaluronate polyelectrolyte complexes.: Physico-chemical aspects. Carbohydr Polym. 317–323. p.
    [86] Denuziere A FD, Damour O, Domard A (1998) Chitosan–chondroitin sulphate and chitosan–hyaluronate polyelectrolyte complexes: biological properties. Biomaterials. 1275–1285 p.
    [87] Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 6: 153-160.
    [88] Li M, Rouaud O, Poncelet D (2008) Microencapsulation by solvent evaporation: State of the art for process engineering approaches. International Journal of Pharmaceutics 363: 26-39.
    [89] He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31: 3657-3666.
    [90] Chiriaco F, Conversano F, Soloperto G, Casciaro E, Ragusa A, et al. (2013) Epithelial cellbio compatibility of silica nanospheres for contrastenhanced ultrasound molecular imaging. . J Nanopart Res 15:1779.
    [91] Tenuta T, Monopoli MP, Kim J SA, Dawson KA, Sandin, et al. (2011) Elution of labile fluorescent dye from nanoparticles during biological use. PLoS One 6:10: e25556
    [92] Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142: 299-311.
    [93] Chen CW, Lu DW, Yeh MK, Shiau CY, Chiang CH (2011) Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine 6: 2567-2580.
    [94] Foster K, Yazdanian M, Audus K (2001) Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol 53: 57-66.
    [95] Couvreur P PF (1993) Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 10: 141-162.
    [96] Jagani H, Rao JV, Palanimuthu VR, Hariharapura RC, Gang S (2013) A nanoformulation of siRNA and its role in cancer therapy: in vitro and in vivo evaluation. Cell Mol Biol Lett 18: 120-136.
    [97] Hillaireau H CP ( 2009) Nanocarriers entry into thecell: relevance to drug delivery Cell. Cell Mol Life Sci 6: 2873–2896.
    [98] Korn ED WR (1967) Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events. . J Cell Biol 34: 219–227.
    [99] Linares J MM, Vila M, Feito MJ, Gonc¸alves G, Vallet-Regı M, Marques PA, Portole´s MT (2014) Endocytic mechanisms of graphene oxide nanosheets in osteoblasts,hepatocytes and macrophages. ACS Appl Mater Interfaces 6: 13697–13706.
    [100] Alberts AJB LJ, Raff M, Roberts K, Walter P ( 2002) Molecular biology of the cell, garland science.
    [101] Verma A SF ( 2010 ) Effect of surface properties on nanoparticle-cell interactions Small 6:1: 12–21.
    [102] Yee S (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res 14: 763-766.
    [103] Dash BC, Rethore G, Monaghan M, Fitzgerald K, Gallagher W, et al. (2010) The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials 31: 8188-8197.
    [104] Chadwick S, Kriegel C, Amiji M (2010) Nanotechnology solutions for mucosal immunization. Advanced Drug Delivery Reviews 62: 394-407.
    [105] Gupta AK, Gupta M, Yarwood SJ, Curtis AS (2004) Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release 95: 197-207.
    [106] Juliano R, Stamp D (1975) The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 63: 651-658.
    [107] Xiao K, Li Y, Luo J, Lee J, Xiao W, et al. (2011) The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32: 3435-3446.
    [108] Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K (2001) Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge. J Control Release 77: 27-38.
    [109] He J, Feng M, Zhou X, Ma S, Jiang Y, et al. (2011) Stabilization and encapsulation of recombinant human erythropoietin into PLGA microspheres using human serum albumin as a stabilizer. International Journal of Pharmaceutics 416: 69-76.
    [110] Bilensoy E, Sarisozen C, EsendaglI G, Dogan AL, Aktas Y, et al. (2009) Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. International Journal of Pharmaceutics 371: 170-176.

    QR CODE