研究生: |
郭家維 Chai-Wei Kuo |
---|---|
論文名稱: |
以γ-聚麩胺酸交聯海藻酸並利用感溫性F127改良水膠性質之探討 Study of Alginate Hydrogel Crosslinked with γ-Polyglutamic Acid and Blended with Temperature-Responsive Pluronic F127 |
指導教授: |
楊銘乾
Ming-Chien Yang |
口試委員: |
李振綱
Cheng-Kang Lee 楊禎明 Jen-Ming Yang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 水膠 、聚麩胺酸 、海藻酸 、F127 |
外文關鍵詞: | Hydrogels, γ-PGA, Alginate, Pluronic F127 |
相關次數: | 點閱:471 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用自行研發之獨特新穎成膠技術利用聚麩胺酸鈣交聯海藻酸鈉並添加經常使用於藥物釋放研究之具溫度敏感性質的非離子型高分子界面活性劑F127 來混摻聚麩胺酸鈣交聯海藻酸鈉水膠膜來評估混摻不同濃度之F127 對於機械性質改良程度之差異及添加後
對水膠膨潤行為、血液相容性之影響。
經由實驗發現,添加F127不但能有效改善水膠膜之機械性質,且對於水膠之膨潤行為而言,不僅增加了膨潤的溫度敏感性、亦影響水膠的酸鹼膨潤變化、而在血液相容性部份,更是促進了水膠膜之抗凝血功能。
對於期望中能兼顧生物相容性、生物可分解性及機械性質、血液相容性之夢幻優良生醫材料而言,本研究可以說成功達成預定目標。
In this study, the improved mechanical properties, swelling behavior and affect of blood-compatibility was investigated by an novel of hydrogels synthesized technique by cross-linking calcium poly(γ-glutamic acid) (γ-PGA) and alginate sodium with blended of various ratios nonionic surfactant Pluronic F127 with temperaturesensitive.
Results showed that the addition of Pluronic F127 can not only improve mechanical properties efficiently but also influence the temperature- sensitive swelling of hydrogels, it also exerted minor effect on the pH-sensitive swelling and promote anticoagulation.
As to an dream of biomaterials should have good biocompatibility, blood-compatibility, biodegradability and outstanding mechanical properties, this research can say that succeed in being close to the predeterminated target.
[1] Ratner B. D. and Hoffman.A. S., “Synthetic hydrogel for biomedical
application”, ACS Symposium Ser., 31, 1 (1976).
[2] Barenberg S. A., “Abridgel Report of the Committee to Survey the Needs
and Opportunities for the Biomaterials Industry”, J. Biomed. Mater. Res.,
22, 1267 (1988).
[3] Hoffman A. S., “Hydrogels for biomedical applications”, Advanced Drug
Reviews 43, 3-12 (2002).
[4] Wichterle O. and Lim. D., “Hydrophilic gels for biological use”, Nature,
185, 117 (1960).
[5] Peppas.N. A. (Ed.), “Hydrogels in medicine and pharmacy”, Vol. 1 CRC
Press, (1988).
[6] Base.Y. H., “pH-induced volume-phase iransition of hydrogels containing
sulfonamide side group by reversible crystal formation”, Macromolecules,
34, 8173 (2001).
[7] Anzai J., Ueno A., Sasaki H., Shimokawa K. and Osa T., “Photocontrolled
Permeation of alkali cation through poly (vinyl chloride) crown ether
membrane.”, Makromol. Chem. Rapid Commun, 4, 731 (1983).
[8] Ishihara K. and Shionhara. I., “Photoinduced permeation control of proteins
using amphiphilic azoaromatic polymer membrane”, J. Polym. Sci. Polym.
Let. Ed., 22, 515 (1984).
[9] Mamada A., Tanaka T., Kungwachakum D., Irie M., “Photo induced phase
transition of gels”, Macromolecules 23, p1517-1519 (1990).
[10] Kwon I. C., Bae Y. H., and Kim S. W., “Electrically erodible polymer gel
for controlled release of drugs”, Nature, 354, 291 (1991).
[11] Vasilevskaya V. V., Starodubtzev S. G. and Khokhlov A. R.,
“Conformational transitions in polymer gels: theory and experiment”, Adv.
Polym. Sci., 109, 123-171 (1993).
[12] Lim D. W., Park T. G., “Stereocomplex formation between enantiomeric
PLA-PEG-PLA triblock copolymers: characterization and use as protein
delivery microparticulate carriers”, J. Appl. Polym. Sci., 75, 1615-1623
(2000).
[13] Yokoyama F., Masada I., Shimamura K., Ikawa T., Monobe K.,
“Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel
prepared by repeated freezing-and-melting”, Colloid Polym. Sci., 264,
595-601(1986).
[14] Gombotz W.R., Wee S.F., “Protein release from alginate matrices”, Adv.
Drug Deliv. Rev., 31, 267-285 (1991).
[15] Hickey A. S., Peppas N. A., “Mesh size and diffusive characteristics of
semicrystalline poly(vinyl alcohol) membranes prepared by
freezing/thawing techniques”, J. Membr. Sci., 107, 229-237 (1995).
[16] Taniguchi M., Kato K., Shimauchi A., Ping X., Fugita K. I., Tanaka T.,
Tarui Y., and Hirasawa E., ”Physicochemical Properties of Cross-linked
Poly-γ-Glutamic Acid and Its Flocculating Activity against Kaolin
Suspension”, J. Biosci. Bioengg. Vol. 99, No. 2, 130–135 (2005).
[17] Ho C. C., Rajam S., “Graft coupling of PEO to mixed cellulose esters
microfiltration membranes by UV irradiation”, J. Membrane Sci., 281,
211–218 (2006).
[18] Brondsted H., Hovgaard L., Simonsen L., “Dextran hydrogels for
colon-specific drug delivery, Comparative release study of hydrocortisone
and prednisolone sodium phosphate”, Stp. Pharma. Sci., 5, 65-69 (1995).
[19] Coviello T., Grassi M., Rambone G., Santucci E., Carafa M., Murtas E.,
Riccieri F. M., Alhaique F., “Novel hydrogel system from sceroglycan :
synthesis and characterization”, J. Controlled Release, 60, 367-378 (1999).
[20] Bettini R., Colombo P., Peppas N. A., “Solubility effects on drug transport
through pH-sensitive, swelling-controlled release system: Transport of
theophylline and metoclopramide monohydrochloride”, J. Controlled
Release, 37, 105-111 (1995).
[21] Cicek H., Tuncel A., “Immobilization of α-chymotypsin in thermally
reversible iso-propylacrylamide-hydroxy-ethylmethacrylate copolymer
gel”, J. Polym. Sci., Part A Polym. Chem., 36, 543-552 (1998).
[22] Peppas N. A., Benner R. E., “Proposed method of intracordal injection and
gelation of poly(vinyl alcohol) solution in vocal cords: polymer
consideration”, Biomaterials, 1, 158-162 (1980).
[23] Chop H. J. and Kunioka M., “Preparation conditions and swelling
equilibria of hydrogel prepared by γ-irradiation from microbial
poly(γ-glutamic acid)”, Radiat. Phys. Chem. Vol. 46, No. 2, pp. 175-179
(1995).
[24] French D., Himmelstein K. and Mauger J. M., “Physicochemical aspects of
controlled release of substituted benzoic and naphthoic acids from carbopol
gels”, J. Contr. Rel., 37, 281 (1995).
[25] Peppas N. A., Moynihah H. J. and Lucy M. L., “The structure of highly
crosslinked poly (2-hydroxyethyl methacrylate) hydrogel”, J. Biomed. Mat.
Res., 19, 397 (1985).
[26] Drurya J. L., Dennisb R. G., Mooneya D. J., “The tensile properties of
alginate hydrogels”, Biomaterials 25, 3187–3199 (2004).
[27] Ott C. M. and Day D. F., “Bacterial Alginate: An Alternative Industrial
Polymer”, TRIP Vol. 3. No. 12. December 402-406 (1995).
[28] Linker A. and Jones R.S., Nature 204, 187 (1964).
[29] Ertesvag H., Valla S., “Biosynthesis and applications of alginates “, Polym.
Degr. Stab., 59 85-91 (1998).
[30] Timmins P., Delargy A. M., Minchom C. M., Howard J. R., “Influence of
some process variables on product properties for a hydrophilic matrix
controlled release tablet”, Eur. J. Pharm. Biopharm. 38 113–118 (1992).
[31] Holte Ø., Onsøyen E., Myrvold R., Karlsen J., “Sustained release of
water-soluble drug from directly compressed alginate tablets”, Eur. J.
Pharm. Sci. 20 403–407 (2003).
[32] Liew C. V., Chan L. W., Ching A. L., Wan P., Heng S., ”Evaluation of
sodium alginate as drug release modifier in matrix tablets” Int. J. Pharm.,
309, 25–37 (2006).
[33] Grassi M., Colombo I., Lapasin R., J. Contr. Rel., 76, 93 (2001).
[34] Kierstan M., Bucke C., Bioeng B., 76, 726 (2000).
[35] Stabler C., Wilks K., Sambanis A., Constantinidis I., Biomaterials 22 1301
(2001).
[36] Blandino A., Macias M., Cantero D., Enzyme Microb.Technol. 27319
(2000).
[37] Tarre M.L., Maggi L., Vigo D., Galli A., Bornaghi V., Maffeo G., Conte
U., Biomaterials, 21, 1493 (2000).
[38] 何觀輝:γ-Polyglutamic acid (γ-PGA)---Structural Characteristics and
Chemical Properties. Chemical Monthly , No. 31:64-71 (2006. 01).聚麩胺
酸之胺酸之結構特性與化學特性. 化工資訊與商情, 64-71, (2006. 01)
[39] Hara T., Fuzio Y., Ueda S., “Polyglutamate production by Bacillus subtilis
(natto)” , J. Appl. Biochemistry V.4, 112-120 (1982).
[40] 味丹企業股份有限公司: γ-PGA及Hydrogels. 產品手冊(第二版), July,
(2005).
[41] Zanuy D., Aleman C., Guerra S. M., “On the helical conformation of
un-ionized poly (γ-glutamic acid)”, Int. J. Biol. Macromol., 23, 175-184
(1998).
[42] 何觀輝:γ-Polyglutamic acid (γ-PGA) Hydrogels and Their Industrial
Application. Bioindustry Vol. 16 No. 4 (2005).
[43] Lin L. Y., “Application of γ-polyglutamic acid on cosmetics, M. Sc.
Thesis”, 國立海洋大學,七月(2004).
[44] Vaughn, T. H., Suter, H. R., Lunsted, L. G. and Kramer M.G., “Properties
of Some Newly Developed Nomionic Detergents”, Am. Oil Chemists. Soc.
Meeting, San Francisco (1950).
[45] Vaughn T. H., Suter H. R., Lunsted L. G. and Kramer M.G., J. Am. Oil
Chemists. Soc., 28, 294(1951).
[46] Jeremy L., “Stabilization and Release Effects of Pluronic F127 in Protein
Drug Delivery”, Biochemistry, J. Undergraduate Sci., Jus. Vol. 5, Issur
2 ,17-24 (1998).
[47] Mortensen B. Jeonga, S. W. Kimb, Y. H. Baeb, “Thermosensitive sol–gel
reversible hydrogels”, Adv. Drug Delivery Rev., 54, 37–51 (2002).
[48] Pedersen K. and Pedersen J. S., Macromolecules, 26, 805 (1993).
[49] Rassing J., McKenna W. P., Bandyopadhyay S. and Eyring E., J. Mol.
Liq.,27 165 (1984).
[50] Balazs A.C. et al, Langmuir, V.8, N.9, p.22959(1992).
[51] Halperin A., Europhys. Lett., V.4, N.4, p.439 (1987).
[52] Xie H. and Liu Y., Polymer, V.34, N.1, p.182 (1993).
[53] Hernandez B. J. and Hunkeler D. J., Polymeric Materical and Engineering,
V.69, p.259 (1993).
[54] Gref R., et al, Science, V.263, N.5153, p.1600 (1994).
[55] Johnston P. T. and Miller S. C., J. Parenter, Sci. Technol., 39 83 (1985).
[56] Henry R. L. and Schmolka I. R., Crit. Rev. Biocompatibility, 5, 207 (1989).
[57] Hurter P. N. and Hatton T. A., Langmuir, 8, 1291 (1992).
[58] Desai S. D., Blanchard J., “In vitro evaluation of Pluronic F-127 based
controlled release ocular delivery systems for pilocarpine”, J. Pharm. Sci.
87, 226–230 (1998).
[59] Lin H.R., Sung K.C., “Carbopol/ pluronic phase change solutions for
ophthalmic drug delivery”, J. Controlled Release 69, 379–388 (2000).
[60] Morishita M., Barichello J.M., Takayama K., Chiba Y., Tokwa S., Nagai
T., “Pluronic F-127 gels incorporating highly purified unsa turated fatty
acids for buccal delivery of insulin”, Int. J. Pharm. 212, 289–293 (2001).
[61] Barichello J.M., Morishita M., Takayama K., Nagai T., “Absorption of
insulin from Pluronic F-127 gels following subcutaneous administration in
rats”, Int. J. Pharm. 184, 189–198 (1999).
[62] Castier Y., Chemla E., Nierat J., Heudes D., Vasseur M.A., Rajnoch C.,
Bruneval P., Carpentier A., Fabaini J.N., “The activity of c-myb antisense
oligonucleotide to prevent intimal hyperplasia is nonspecific”, J.
Cardiovasc. Surg. 39, 1–7 (1998).
[63] Wolf M. G., Jang Y., Lincoff A.M., Cohen J. L., Labhasetwar V., Poptic E.
J., Forudi F., Guzman L. A., DiCorleto P. E., Levy R. J., Topol E. J., Ellis
S. G., “Influence of local delivery of protein tyrosine kinase receptor
inhibitor tryphostin-47 on smooth muscle cell proliferation in a rat carotid
balloon injury model”, Am. Heart J., 133,329–334 (1997).
[64] Johnston T.P., Punjabi M.A., Froelich C.J., “Sustained deliv-ery of
interlukin-2 from a poloxamer 407 gel matrix following intraperitoneal
injection in mice”, Pharm. Res. 9, 425–434 (1992).
[65] DiBiase M. D., Rhodes C. T., “Investigations of epidermal growth factor in
semisolid formulations”, Pharm. Acta Helv. 66, 165–169 (1991).
[66] Cho C.W., Cho Y.S., Lee H. K., Yeom Y. I., Park S. N., Yoon D. Y.,
“Improvement of receptor-mediated gene delivery to HepG2 cells using an
amphiphilic gelling agent”, Biotechnol. degAppl. Biochem. 32, 21–26
(2000).
[67] Paavola A., Kilpelainen I., Yliruusi J., Rosenberg P., “Con- biotrolled
release injectable liposomal gel of ibuprofen for epidural analgesia”, Int. J.
Pharm. 199, 85–93 (2000).
[68] Paavola A., Tarkkila P., Xu M., Wahlstrom T., Yliruusi J., Rosenberg P.,
“Controlled release gel of ibuprofen and lidocaine in epidural use —
analgesia and systemic absorption in pigs”, Pharm. Res. 15, 482–487
(1998).
[69] Clokie C. M., Urist M. R., “Bone morphogenic protein excipients:
comparative observations on poloxamer”, Plast. Reconstr. Surg. 105,
628–637 (2000).
[70] Veyries M. L., Couarraze G., Geiger S., Agnely F., Massias L., Kunzli B.,
Faurisson F., Rouveix B., “Controlled release of vancomycin from
poloxamer 407 gels”, Int. J. Pharm. 192, 183–193 (1999).
[71] Hom D. B., Medhi K., Assefa G., Juhn S. K., Johnston T. P., “Vascular
effects of sustained-release fibroblast growth factors”, Ann. Otol. Rhinol.
Laryngol. 105, 109–116 (1996).
[72] Prasad. K., Luong T. T., et al, J. Colloid Interf. Sci. 69, 225 (1979).
[73] Qiu Y. and Park K., “Environment-sensitive hydrogels for drug delivery”,
Adv. Drug Deliv. Rev. 53, p321 (2001).
[74] Quintana J. R., Jáñez M. D. and Katime I., “Micellization of triblock
copolymers in a solvent selective for the middle block: Influence of the
molar mass”, Polymer, 39, 2111-2117 (1998).
[75] Mahajan R. K., Bakshi M. S. “Cyclic voltammetry investigation of the
mixed micelles of conventional surfactants with L64 and F127”, Colloids
and Surfaces A: Physicochem. Eng. Aspects 276, 221–227 (2006).
[76] Base Y. H., “pH-induced volume-phase iransition of hydrogels containing
sulfonamide side group by reversible crystal formation”, Macromolecules,
34, 8173 (2001).
[77] IIavský M., “Effect of electrostatic interactions on phase transition in
swollen polymeric network.”, Polymer, 22, 1687 (1981).
[78] Horbeet T. A., Ratner B. D., Kost J. and Singh M., “A bioresponsive
membrane for insulin delivery, Recent Advances in Drug Delivery
Systems”, Plenum Press, 209 (1984).
[79] Chandaroy P., Sen A., Hui S. W., “Temperature-controlled content release
from liposomes encapsulating Pluronic F127”, Journal of Controlled
Release 76, 27–37(2001).
[80] Hoffman A. S., Afrassiabi A. A., and Dong L. C., “Thermally reversible
hydrogels.Ⅱ. Delivery and selective release of substances from aqueous
solutions”, J. Contr. Rel., 4, 213 (1986).
[81] Bae Y. H., Okano T. and Kim S. W.., “A new thermo-sensitive
hydrogels:Interpenetrating polymer networks from N-acryloylpyrrolidine
and poly(oxyethylene).”, Makromol. Chem. Rapid Commun”, 9, 185
(1988).
[82] Heskins M., Guillet J. E. and James E., “Solution properties of
poly(N-isopropylacrylamide)”, J. Macromol. Sci. Chem., A2, 1441 (1968).
[83] Kubota K., Ando I. and Fujishige S., “Solution properties of
poly(N-isopropylacrylamide)in water”, Polym. J., 22, 15 (1990).
[84] Alexandridis P., “Poly(ethylene oxide) poly(propylene oxide) block
copolymer surfactants”, Curr. Opin. Colloid Int. Sci. 2 (5), 478–489
(1997).
[85] Chandaroy P., Sen A., Hui S. W. ,”Temperature-controlled content release
from liposomes encapsulating Pluronic F127”, Journal of Controlled
Release 76, 27–37 (2001).
[86] 美國材料測試協會標準,ASTM D638 薄膜及薄片之抗拉性能試 驗
法。
[87] 李育德等編著,聚合物物性7 版,高立圖書有限公司,台北,(1995)。
[88] Wang Y., Su Y., Sun Q., Ma X., Ma X., Jiang Z., “Improved permeation
performance of Pluronic F127–polyethersulfone blend ultrafiltration
membranes”, Journal of Membrane Science 282 44–51(2006).
[89] Ishihara K., Fukumoto K., Iwasaki Y., Nakabayashi N., ”Modification of
polysulfone with phospholipid polymer for improvement of the blood
compatibility. Part 2. Protein adsorption and platelet adhesion.”,
Biomaterials, v20,I 17:1553-1559(1999).
[90] 何敏夫,凝固作用,血液學,合計出版社,台北, 509-528,2001年。
[91] 陳林興、黃華,時間和溫度對凝血酶原時間、活化部分凝血活酶時間、
凝血酶時間、纖維蛋白原檢測結果的影響分析,汕頭大學醫學院學報,
2004年01期。
[92] 吳翠君,“壓電石英晶體微天平於抗固劑血液凝固時間之研究”,成功
大學醫學工程研究所碩士論文,9-14,(1999)。
[93] Rao A. K., “Congenital disorder of platelet function: disorder of signal
transduction and secretion”, The American Journal of the Medical
Sciences., 316, 69-76 (1998).
[94] Douglas A. T.,” Coagulation and bleeding Disorders: Review and Update”,
Clinical Chemistry., 46(8), 1260-1269 (2000).
[95] 王毓萱,“聚胺基甲酸酯表面改質對血小板活化之研究”,中原大學醫
學工程研究所碩士論文,11-14,(2000)。
[96] 何敏夫,初步止血之檢查,血液學,合記出版社,台北,489-508,(2001)。
[97] 林銘信,“比較雲南白藥與維生素K1對於犬隻誘發warfarin慢性中毒的
凝血效果”,中興大學獸醫學院獸醫學研究所碩士論文,11-30,(2002)。
[98] Fujimoto K., Minato M., Tadokoro H., and Ikada Y., “Platelet deposition
onto polymeric surfaces during shunting”, J. Biomed Mater, Res., 27, 335
(1993).
[99] Lin S. Q. and Kodama M., “Porous polyurethane vascular prostheses with
variable compliances”, J. Biomed Mater, Res., 26, 1489 (1992).
[100] Grasel T. G. and Cooper S. L., “Properties and biological interaction of
polyurethane anionomers: Effect of sulfonate incorporation., J. Biomed
Mater, Res., 23, 311(1989).
[101] Ito Y., Sisido M. and Imanishi Y., “Synthesis and antithrombogenicity
of anionic polyurethans and heparin-blood polyurethanes”, J. Biomed
Mater, Res., 20, 1157 (1986).
[102] Johnson S. D., Anderson J. M. and Maechant R. E., “Biocompatibility
studies on plasma polymerized interface materials encompassing both
hydrophobic and hydrophilic surfaces., J. Biomed Mater, Res., 26, 915
(1992).
[103] Merrill E. W., Wan S. and Salzman E. W., Trans. Am. Soc. Artif. Intern.
Organs., 20, 1517 (1986).
[104] Baier R. E., “Applied chemistry at protein interfaces”, Adv. Chem. Ser.,
1, 145 (1975).
[105] Yu J., Sundaram S. and Wen D., “Interaction between phospholipids
and biocompatible polymers containing a phosphorylcholine moiety”,
Biomaterials, 12, 121 (1991).
[106] Kitamoto Y., Tomita M., Inore T. and Kiyama S., “Antithrombotic
mechanisms of urokinase immobilized polyurethane”, Thromb.
Haemostas., 65, 73 (1991).