簡易檢索 / 詳目顯示

研究生: 黃彥翔
Yen-Hsiang Huang
論文名稱: 製備以銀奈米粒子與多層奈米碳管修飾之酚類化合物感測器並結合流動注射系統進行偵測
Preparation of Amperometric Phenol Sensors by Integrating Multi-Walled Carbon Nanotubes with Silver Nanoparticles (Ag@MWCNTs) and Potential to Apply in the Flow Injection Analysis (FIA) System
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 李振綱
Cheng-Kang Lee
施志欣
Chih-Hsin Shih
周秀慧
Shiu-Huey Chou
莊怡哲
Yi-Je Juang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 123
中文關鍵詞: 辣根過氧化氫酶生物感測器奈米銀多層碳管酚類化合物流動注射分析
外文關鍵詞: horseradish peroxidase, amperometric biosensor, carbon nanotubes, phenolic compound, flow injection analysis
相關次數: 點閱:272下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的為製備出奈米銀多層碳管複合材料,將其應用於修飾辣根過氧化氫酶生物感測器,以感測酚類化合物。在材料製備方面,藉由碳酸氫銨將奈米多層碳管官能基化,並加入硝酸銀及二甲基甲醯胺,將奈米銀還原於奈米碳管表面,並利用傅里葉轉換紅外光譜(FTIR)、場發射掃描式電子顯微鏡(FE-SEM)及X-光繞射(XRD)等儀器進行分析及討論。
    在辣根過氧化氫酶(horseradish peroxidase, HRP)生物感測器方面,修飾步驟分別為:氧氣電將處理、甲殼素-奈米銀多層碳管及HRP,利用氧氣電漿清潔電極表面及製備出親水表面,以利後續修飾層之塗佈,第二部分為甲殼素-奈米銀多層碳管層,利用甲殼素將HRP固定於電極表面,並利用奈米銀多層碳管提升偵測靈敏度,最後一層為HRP酵素。製備完成後,將此生物感測器感測酚、4-氯酚及鄰苯二酚,感測酚之偵測靈敏度為2.37 μA/μM cm2(0.75 – 100 μM, R2:0.976)及0.749 μA/μM cm2(100 – 400 μM, R2:0.979);感測4-氯酚之偵測靈敏度為5.821 μA/μM cm2(10 – 60 μM, R2:0.946)及0.704 μA/μM cm2(60 – 120 μM, R2:0.877);感測鄰苯二酚之偵測靈敏度為0.837 μA/μM cm2(10 – 180 μM, R2:0.989),並且利用感測酚,進行穩定測試、偵測極限測試、長時間保存測試和干擾物測試。
    最後一部分為將此生物感測器結合流動注射分析(flow injection analysis system, FIA)系統,以達到連續感測之目的,利用PDMS為基礎之流動感測系統,結合注射式幫補,成功製備出酚類感測器,其電化學性質為2.77 μA/μM cm2(0.5 – 20 μM, R2:0.974)。


    This study is comprised of two parts: the first part focused on the synthesis of the complexes of Ag@carbon nanotubes (Ag@CNTs) and preparation of horseradish peroxidase (HRP) biosensor. Carbon nanotubes (CNTs) have drawn considerable attention in recent years because of their superior properties that include the larger specific surface area and more electrocatalytic activity, which can significantly enhance the amperometric anodic signal. In this study, the incorporation of Ag nanoparticles on CNTs aimed to enhance the electrical conductivity and reduce the contact resistance. Moreover, various analytical tools were employed to verify the physical-chemical and morphology characteristics of the prepared Ag@CNTs. An amperometric biosensor base on HRP and chitosan- Ag@carbon nanotubes (Ch-Ag@CNTs) on screen printed carbon electrode (SPE). The current responses were detected by phenolic compound at applied voltage -50 mV. The results showed that two sensitivity of phenol detection were 2.37 μA/μM cm2 (0.75 - 100 μM, R2:0.976) and 0.749 μA/μM cm2 (100 - 400 μM, R2:0.979) and limitation of detection was 0.375 μM. It retained 80% of its initial current response after 30 days.
    For the second part, a custom-made flow channel was applied which mainly plays the role of minimize the required components for reactions and further facilitated the integration, automation, and parallelization for the designated biochemical processes. In addition, the prepared Ch-Ag@CNTs in the first part and HRP were incorporated on SPE for the detection of phenol, which was further combined with a custom-made flow channel, to form “Flow Injection Analysis” (FIA). The FIA designed in this study allows the manipulation of small fluid volume, from micro- down to pico- liter, with exceptional accuracy. In summary, the proposed FIA would have the advantages including low price, rapid response time, high accuracy, and smaller reaction volume that can reduce the thickness of the diffusion layer and effectively convey electronic signals between solid-liquid phases when compared with the conventional system, and could be utilized for a wider range of applications. The results showed that the sensitivity of phenol detection were 2.77 μA/μM cm2 (0.5 - 20 μM, R2:0.974).

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章、緒論 1 1-1、前言 1 1-2、研究動機 2 第二章、文獻回顧 3 2-1、檢測酚類的重要性 3 2-1-1、酚之化學性質 4 2-1-2、酚類之應用 5 2-1-3 、酚類之檢測方法及其優缺 6 2-1-3-1、線上流動-比色法 6 2-1-3-2、氣相層析法 7 2-1-3-3、各項酚類檢測之優劣 9 2-2、電化學生物感測器用於感測酚類 11 2-2-1、酪胺酸酶電化學生物感測器 12 2-2-2、辣根過氧化氫酶電化學生物感測器 14 2-2-3、比較酪胺酸酶和過氧化氫酶電化學生物感測器 17 2-3、流動注射分析(FLOW INJECTION ANALYSIS, FIA)系統介紹 18 2-3-1、流動注射分析系統結合電化學分析裝置之應用 19 2-3-1-1、流動注射分析系統結合電化學分析裝置應用於農業廢水 19 2-3-1-2、流動注射分析系統結合電化學分析裝置應用於血液分析 21 2-3-2、流動注射分析系統結合電化學分析裝置應用於酚類感測 22 2-3-2-1、流動注射分析系統結合酪胺酸酶生物感測器 22 2-3-3-2、流動注射分析系統結合HRP生物感測器 24 第三章、實驗方法 29 3-1、實驗設備 29 3-2、實驗藥品 30 3-2-1、實驗藥品 30 3-2-2、溶液配製 32 3-2-2-1、緩衝溶液配置 32 3-2-2-2、修飾層溶液配製 32 3-2-2-3、待測物溶液配製 32 3-3、實驗方法 33 3-3-1、製備辣根過氧化氫(horseradish peroxide, HRP)生物感測器感測酚類 33 3-3-1-1、將奈米銀還原於多層奈米碳管表面之合成方法 33 3-3-1-2、製備酵素型酚類化合物感測器 33 3-3-1-3、製備流動注射系統 35 3-3-2、分析儀器與方法 37 3-3-2-1、水接觸角之量測(water contact angle, WCA) 37 3-3-2-2、傅立葉轉換紅外線光譜儀分析(FTIR) 37 3-3-2-3、場發射電子顯微鏡分析(FE-SEM) 37 3-3-3、電化學分析原理 39 3-3-3-1、電化學分析裝置 39 3-3-3-3、計時安培法 (Amperometric method) 43 第四章、結果與討論 44 4-1、奈米銀多層碳管複合材料分析 45 4-1-1、多層碳管官能基化之分析 45 4-1-2、pH值對奈米銀之形狀影響 46 4-1-3、探討不同形狀奈米銀多層奈米碳管對電化學活性面積之影響 47 4-1-4、奈米銀多層碳管(pH:6.0)之特性 49 4-1-4-1、奈米銀多層碳管之晶體結構分析(XRD) 49 4-1-4-2、奈米銀多層碳管之電化學特性 50 4-2、辣根過氧化氫酶生物感測器之電化學特性 51 4-2-1、辣根過氧化氫酶生物感測器之最適化 51 4-2-1-1、氧氣電漿處理之參數最適化 51 4-2-1-2、奈米銀多層碳管之最適化 54 4-2-1-3、甲殼素修飾層之最適化 55 4-2-1-4、辣根過氧化氫酶之最適化 57 4-2-1-6、工作溶液pH值之最適化 61 4-2-2、辣根過氧化氫酶生物感測器之電化學特性 63 4-2-2-1、辣根過氧化氫酶生物感測器感測酚類之特性 63 4-2-2-2、辣根過氧化氫酶生物感測器之穩定性測試 66 4-2-2-3、掃描速率對辣根過氧化氫酶生物感測器之影響掃描速率影響 69 4-2-2-4、不同酵素型生物感測器之比較 72 4-2-2-5、利用辣根過氧化氫酶生物感測器感測酚類化合物 75 4-2-2-6、辣根過氧化氫酶生物感測器之偵測極限測試 79 4-2-2-7、辣根過氧化氫酶生物感測器之長時間穩定測試 80 4-2-2-8、本研究與文獻生物感測器之比較 82 4-2-2-9、干擾物測試及修飾抗干擾層之電化學特性 84 4-3、辣根過氧化氫酶生物感測器結合流動注射分析系統 90 4-3-1、流動注射分析系統之流速最適化 90 4-3-2、流動注射分析系統之穩定測試 92 4-3-3、流動注射分析系統之電化學特性 94 第五章、結論與未來展望 97 第六章、參考文獻 99 問題與建議 105

    [1] Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification1. Biosensors and Bioelectronics. 2001;16:121-31.
    [2] Rainina EI, Efremenco EN, Varfolomeyev SD, Simonian AL, Wild JR. The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins. Biosensors and Bioelectronics. 1996;11:991-1000.
    [3] Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics. 2015;63:218-31.
    [4] Fang Z, Sun L, Xu S. The first decade of flow-injection analysis in China. Analytica Chimica Acta. 1992;261:557-76.
    [5] Wang J, Suzuki H, Satake T. Coulometric microdevice for organophosphate pesticide detection. Sensors and Actuators B: Chemical. 2014;204:297-301.
    [6] Korkut S, Keskinler B, Erhan E. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta. 2008;76:1147-52.
    [7] Rajesh, Takashima W, Kaneto K. Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Sensors and Actuators B: Chemical. 2004;102:271-7.
    [8] Wang P, Liu M, Kan J. Amperometric phenol biosensor based on polyaniline. Sensors and Actuators B: Chemical. 2009;140:577-84.
    [9] Liu S, Yu J, Ju H. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. Journal of Electroanalytical Chemistry. 2003;540:61-7.
    [10] 張錦松 王. 批式活性污泥處理高酚濃度廢水之研究: 嘉南藥理大學 2012.
    [11] Jewel Crawford, Obaid Faroon, Jewell Wilson. TOXICOLOGICAL PROFILE FOR PHENOL: ATSDR; 2008.
    [12] Ruzgas T, Emnéus J, Gorton L, Marko-Varga G. The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Analytica Chimica Acta. 1995;311:245-53.
    [13] 中華民國104年2月4日水污染防治法.
    [14] 楊國義. 公共衛生事件應急處理實務 公共衛生事件應急處理與病原分析檢測鑒定實用手冊: 中科多媒體電子出版社; 2003.
    [15] Shinn MB. Colorimetric Method for Determination of Nitrate. Industrial & Engineering Chemistry Analytical Edition. 1941;13:33-5.
    [16] Niwa T. Phenol and p-cresol accumulated in uremic serum measured by HPLC with fluorescence detection. Clinical Chemistry. 1993;39:108-11.
    [17] 中華民國101年1月18日環署檢字第1010006593號公告-水中酚類檢測方法-線上蒸餾/流動分析法.
    [18] Ettinger M, Ruchhoft C, Lishka R. Sensitive 4-Aminoantipyrine Method for Phenolic Compounds. Analytical Chemistry. 1951;23:1783-8.
    [19] Dannis M. Determination of Phenols by the Amino-Antipyrine Method. Sewage and Industrial Wastes. 1951;23:1516-22.
    [20] 中華民國100年12月15日環署檢字第1000110054號公告-水中酚類化合物檢測方法-氣相層析儀.
    [21] Rosatto SS, Sotomayor PT, Kubota LT, Gushikem Y. SiO2/Nb2O5 sol–gel as a support for HRP immobilization in biosensor preparation for phenol detection. Electrochimica Acta. 2002;47:4451-8.
    [22] Yamamoto K, Shi G, Zhou T, Xu F, Xu J, Kato T, et al. Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors. Analyst. 2003;128:249-54.
    [23] Freire RS, Duran N, Kubota LT. Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft E1 paper mill effluent. Analytica Chimica Acta. 2002;463:229-38.
    [24] Wang J, Lu F, Lopez D. Tyrosinase-based ruthenium dispersed carbon paste biosensor for phenols. Biosensors and Bioelectronics. 1994;9:9-15.
    [25] Albareda-Sirvent M, Merkoçi A, Alegret S. Configurations used in the design of screen-printed enzymatic biosensors. A review. Sensors and Actuators B: Chemical. 2000;69:153-63.
    [26] Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology. 2004;35:126-39.
    [27] Vargas-Bernal R, Herrera-Pérez G, Rodríguez-Miranda E. Evolution and Expectations of Enzymatic Biosensors for Pesticides2012.
    [28] Ortega F, Domínguez E, Jönsson-Pettersson G, Gorton L. Amperometric biosensor for the determination of phenolic compounds using a tyrosinase graphite electrode in a flow injection system. Journal of Biotechnology. 1993;31:289-300.
    [29] Fenoll LG, Peñalver MJ, Rodrı́guez-López JN, Varón R, Garcı́a-Cánovas F, Tudela J. Tyrosinase kinetics: discrimination between two models to explain the oxidation mechanism of monophenol and diphenol substrates. The International Journal of Biochemistry & Cell Biology. 2004;36:235-46.
    [30] Casella L, Monzani E, Gullotti M, Cavagnino D, Cerina G, Santagostini L, et al. Functional Modeling of Tyrosinase. Mechanism of Phenol ortho-Hydroxylation by Dinuclear Copper Complexes. Inorganic Chemistry. 1996;35:7516-25.
    [31] Alarcón G, Guix1 M, Ambrosi A, Silva MTR, Pardave MEP, Merkoçi A. Screen-printed electrodes incorporated in a flow system for the decentralized monitoring of lead, cadmium and copper in natural and wastewater samples. International Journal of Environmental Analytical Chemistry. 2012:1.
    [32] Carralero Sanz V, Mena ML, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Analytica Chimica Acta. 2005;528:1-8.
    [33] Li Y-F, Liu Z-M, Liu Y-L, Yang Y-H, Shen G-L, Yu R-Q. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Analytical Biochemistry. 2006;349:33-40.
    [34] Job D, Dunford HB. Substituent Effect on the Oxidation of Phenols and Aromatic Amines by Horseradish Peroxidase Compound I. European Journal of Biochemistry. 1976;66:607-14.
    [35] Dunford HB, Cotton ML. Kinetics of the oxidation of p-aminobenzoic acid catalyzed by horseradish peroxidase compounds I and II. BIOLOGICAL CHEYIBTBY 1974;250.
    [36] Mello LD, Sotomayor MDPT, Kubota LT. HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sensors and Actuators B: Chemical. 2003;96:636-45.
    [37] Cui R, Huang H, Yin Z, Gao D, Zhu J-J. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics. 2008;23:1666-73.
    [38] Chen H, Dong S. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived ceramic–carbon nanotube nanocomposite film. Biosensors and Bioelectronics. 2007;22:1811-5.
    [39] Xi F, Liu L, Chen Z, Lin X. One-step construction of reagentless biosensor based on chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition. Talanta. 2009;78:1077-82.
    [40] Xi F, Liu L, Wu Q, Lin X. One-step construction of biosensor based on chitosan–ionic liquid–horseradish peroxidase biocomposite formed by electrodeposition. Biosensors and Bioelectronics. 2008;24:29-34.
    [41] Liu X, Luo L, Ding Y, Xu Y. Amperometric biosensors based on alumina nanoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds. Analyst. 2011;136:696-701.
    [42]Tsai Y-C, Chiu C-C. Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensors and Actuators B: Chemical. 2007;125:10-6.
    [43] Ren J, Kang T-F, Xue R, Ge C-N, Cheng S-Y. Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes. Microchim Acta. 2011;174:303-9.
    [44] Kafi AKM, Chen A. A novel amperometric biosensor for the detection of nitrophenol. Talanta. 2009;79:97-102.
    [45] Mervartová K, Polášek M, Martínez Calatayud J. Recent applications of flow-injection and sequential-injection analysis techniques to chemiluminescence determination of pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis. 2007;45:367-81.
    [46] Tzanavaras PD, Themelis DG. Review of recent applications of flow injection spectrophotometry to pharmaceutical analysis. Analytica Chimica Acta. 2007;588:1-9.
    [47] Rainelli A, Stratz R, Schweizer K, Hauser PC. Miniature flow-injection analysis manifold created by micromilling. Talanta. 2003;61:659-65.
    [48] Anthemidis AN, Martavaltzoglou EK. Determination of arsenic(III) by flow injection solid phase extraction coupled with on-line hydride generation atomic absorption spectrometry using a PTFE turnings-packed micro-column. Analytica Chimica Acta. 2006;573–574:413-8.
    [49] Leach AM, Wheeler AR, Zare RN. Flow Injection Analysis in a Microfluidic Format. Analytical Chemistry. 2003;75:967-72.
    [50] Trojanowicz M. Flow injection analysis: instrumentation and applications2000.
    [51] Xu W, Richard, Sandford, J P, Worsfold. Flow Injection Techniques in Aquatic Environmental Analysis: Recent Applications and Technological Advances2007.
    [52] Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR. Biosensors for direct determination of organophosphate pesticides. Biosensors and Bioelectronics. 2001;16:225-30.
    [53] Wang J, Krause R, Block K, Musameh M, Mulchandani A, Mulchandani P, et al. Dual amperometric–potentiometric biosensor detection system for monitoring organophosphorus neurotoxins. Analytica Chimica Acta. 2002;469:197-203.
    [54] Sinha R, Ganesana M, Andreescu S, Stanciu L. AChE biosensor based on zinc oxide sol–gel for the detection of pesticides. Analytica Chimica Acta. 2010;661:195-9.
    [55] Du D, Huang X, Cai J, Zhang A. Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sensors and Actuators B: Chemical. 2007;127:531-5.
    [56] Wang J, Krause R, Block K, Musameh M, Mulchandani A, Schöning MJ. Flow injection amperometric detection of OP nerve agents based on an organophosphorus–hydrolase biosensor detector. Biosensors and Bioelectronics. 2003;18:255-60.
    [57] Lin Y, Lu F, Tu Y, Ren Z. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Letters. 2004;4:191-5.
    [58] Liu Y, Wang M, Zhao F, Xu Z, Dong S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics. 2005;21:984-8.
    [59] Chauhan N, Pundir CS. An amperometric uric acid biosensor based on multiwalled carbon nanotube–gold nanoparticle composite. Analytical Biochemistry. 2011;413:97-103.
    [60] Bhambi M, Sumana G, Malhotra BD, Pundir CS. An Amperomertic Uric Acid Biosensor Based on Immobilization of Uricase onto Polyaniline-multiwalled Carbon Nanotube Composite Film. Artificial Cells, Blood Substitutes, and Biotechnology. 2010;38:178-85.
    [61] Couto CMCM, Araújo AN, Montenegro MCBSM, Rohwedder J, Raimundo I, Pasquini C. Application of amperometric sol–gel biosensor to flow injection determination of glucose. Talanta. 2002;56:997-1003.
    [62] Alarcón G, Guix1 M, Ambrosi A, Silva MTR, Pardave MEP, Merkoçi A. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor Nanotechnology. 2010;21:2010.
    [63] Kolliopoulos AV, Kampouris DK, Banks CE. Indirect electroanalytical detection of phenols. Analyst. 2015;140:3244-50.
    [64]Sahin A, Dooley K, Cropek DM, West AC, Banta S. A dual enzyme electrochemical assay for the detection of organophosphorus compounds using organophosphorus hydrolase and horseradish peroxidase. Sensors and Actuators B: Chemical. 2011;158:353-60.
    [65] Ma PC, Tang BZ, Kim J-K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon. 2008;46:1497-505.
    [66] Lin J, He C, Zhao Y, Zhang S. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sensors and Actuators B: Chemical. 2009;137:768-73.
    [67] D'Orazio P. Biosensors in clinical chemistry — 2011 update. Clinica Chimica Acta. 2011;412:1749-61.
    [68] Zoski CG. Handbook of Electrochemistry2007.
    [69]Brajter-Toth A. Electroanalytical Methods:  Guide to Experiments and Applications Edited by Fritz Scholz (E.-M.-Arndt-Universität Greifswald). Springer-Verlag:  Berlin, Heidelberg, New York. 2002. xxii + 332 pp. $69.95. ISBN 3-540-42229-3. Journal of the American Chemical Society. 2003;125:3398-.
    [70] Nomngongo PN, Ngila JC, Msagati TAM. Indirect Amperometric Determination of Selected Heavy Metals Based on Horseradish Peroxidase Modified Electrodes2011.
    [71] Chen L, Yu W, Xie H. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technology. 2012;231:18-20.
    [72] Safari J, Gandomi-Ravandi S. Silver decorated multi-walled carbon nanotubes as a heterogeneous catalyst in the sonication of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones. RSC Advances. 2014;4:11654-60.
    [73] Li C, Zhang H, Wu P, Gong Z, Xu G, Cai C. Electrochemical detection of extracellular hydrogen peroxide released from RAW 264.7 murine macrophage cells based on horseradish peroxidase-hydroxyapatite nanohybrids. Analyst. 2011;136:1116-23.
    [74] Rad AS, Mirabi A, Binaian E, Tayebi H. A Review on Glucose and Hydrogen Peroxide Biosensor Based on Modified Electrode Included Silver Nanoparticles. Int J Electrochem Sci. 2011;6:3671-83.
    [75] Nomngongo PN, Ngila JC, Nyamori VO, Songa EA, Iwuoha EI. Determination of Selected Heavy Metals Using Amperometric Horseradish Peroxidase (HRP) Inhibition Biosensor. Analytical Letters. 2011;44:2031-46.

    無法下載圖示 全文公開日期 2020/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE