簡易檢索 / 詳目顯示

研究生: 陳楷倫
Kai-Lun Chen
論文名稱: 高位頸椎損傷病患之個人化移動載具及機器手臂操作系統設計與實現
Design and Implementation of a Personal Mobility and Manipulation System for High-Level Spinal Cord Injury Patients
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 宋開泰
Kai-Tai Song
林其禹
Chyi-Yeu Lin
徐繼聖
Gee-Sern Hsu
蘇順豐
Shun-Feng Su
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 個人化移動載具六軸機械手臂下巴控制器機械手臂運動學
外文關鍵詞: 6DOF robot arm, personal mobility, chin controller, robot kinematics
相關次數: 點閱:251下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出個人化移動載具及機器手臂操作系統,此一系統包含一台個人化移動載具與Universal type robot的六自由度機械手臂,並搭配下巴控制器來進行
    個人化移動載具及機器手臂操作控制,來提供高位頸椎損傷病患完成一些特定的日常生活動作。當受測者使用本論文所開發之下巴控制器時,需先選擇使用模式,才能進行個人化移動載具及機器手臂的操控,本文中下巴控制器將與日常生活動作配合,讓使用者可以透過兩種行為模式進行操作並完成日常生活中所需動作。
    下巴控制器將分為個人化移動載具與機械手臂兩種控制模式,當使用者藉由 下巴控制器之按鈕來確定模式後,使用搖桿來進行當下模式的操作。模式一為個人化移動載具操作控制,透過下巴控制器上之搖桿來操作個人化移動載具平台的移動,讓使用者能夠自主移動至想到達的地方。模式二為六軸機械手臂之寸動模式,使用下巴控制器上之搖桿來操作機械手臂的X、Y、Z軸向的移動,來達到機械手臂預到達位置。
    為了達到上述之功能,本論文將進行手動輪椅改造成個人化移動載具,並在個人化移動載具上搭載六自由度之Universal結構機械手臂,並在末端軸搭配了平行四連桿機構夾爪,讓機械手臂能夠夾取物品,最後,本論文將使用機械手臂之寸動模式來進行桌面上之水杯的夾取,並將夾取到的水杯透過軌跡點規劃送至使用者嘴巴附近讓使用者能順利喝到水,藉此驗證本系統之可行性。


    This thesis proposed a mechatronics system, which contained a personal mobility and a universal type robot arm with six degrees of freedom for whom suffered from high spinal cord injury. Considering users only had ability to move their neck, a “chin controller” was implemented as the user interface to deliever commands. In this thesis, there were two built-in openation modes in the chin controller system to provide the activities in our daily life.
    The chin controller consisted of the “personal mobility” mode and the “robot arm jog control” mode. The operation mode was changed with a button; the joystick is to implement the motion. The first mode was for the operation of personal mobility function, through the joystick on the chin controller to control the movement of the personal mobile platform, allowing the user to move to the desired place. The second mode was for the controlling of the six-axis robot arm, using the joystick on the chin controller to implement the X, Y, Z axial jog movement of the robot arm.
    To verify the proposed chin controller this work, rebuilt a wheelchair to perform personal mobility which was equipped robotic arm with six degrees of freedom and a four parallel link mechanism gripper to hold objects in extremity. Finally, the experiment of controlling wheelchair to move a destination for grasping a cup task were realized for feasibility verification.

    指導教授推薦書 i 口試委員會審定書 ii 誌謝 iii 摘要 iv Abstract v 目錄 vi 表目錄 viii 圖目錄 ix 符號說明 xi 第一章 緒論 1.1 研究背景與動機 1.2 研究目的 1.3 文獻回顧 1.3.1 操控人機介面設計 1.3.2 輪椅輔具用之機械手臂上分類 1.4 論文架構 第二章 系統架構與設計實現 2.1 系統架構 2.2 硬體平台設計 2.2.1 下巴控制器設計與操控 2.2.2 個人化移動載具設計 2.2.3 立體視覺攝影機 2.2.4 立體視覺深度量測 2.3 機械手臂設計 2.3.1 夾爪設計 2.4 使用情境 第三章 研究方法 3.1 個人化移動載具之雙輪運動學 3.2 空間中座標轉換 3.3 機械手臂運動學 3.3.1 Denavit-Hartenberg矩陣表示法 3.3.2 正向運動學 3.3.3 六軸機械手臂D-H模型 3.3.4 逆向運動學 3.4 軌跡點速度規劃 第四章 實驗結果與實現 4.1 機器手臂運動學驗證 4.2 軌跡點測試 4.3 夾取水杯驗證 第五章 結論與未來研究方向 參考文獻

    [1] F. Achic, J. Montero, C. Penaloza and F. Cuellar, “Hybrid BCI system to operate an electric wheelchair and a robotic arm for navigation and manipulation task”, IEEE Advanced Robotics and its Social Impacts (ARSO), pp. 249-254, 2016.
    [2] W. Wang, Z. Zhang, Y. Suga, H. Iwata and S. Sugano, “Intuitive operation of a wheelchair mounted robotic arm for the upper limb disabled: The mouth-only approach”, IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1733-1740, 2012.
    [3] A. Haddad, R. Sudirman, C. Omar, S. Zubaidah and M. Tumari, “Wheelchair motion control guide using eye gaze and blinks based on Bug algorithms”, IEEE EMBS Conference on Biomedical Engineering and Sciences, pp. 398-403, 2012.
    [4] S. Plesnick, D. Repice and P. Loughnane, “Eye-controlled wheelchair”, IEEE Canada Conference on International Humanitarian Technology Conference, pp. 1-4, 2014.
    [5] J. Hwang, M. Jung, J. Kim and J. Tani, “A deep learning approach for seamless integration of cognitive skills for humanoid robots”, IEEE International Conference on Development and Learning and Epigenetic Robotics, pp. 59-65, 2016.
    [6] A. Palla, L. Sarti, A. Frigerio and L. Fanucci, “Embedded Implementation of an eye-in-hand visual servoing control for a wheelchair mounted robotic arm”, IEEE Symposium on Computers and Communication (ISCC), pp. 274-277, 2016.
    [7] P. Ktistakis and G. Bourbakis, “A survey on robotic wheelchairs mounted with robotic arms”, National Aerospace and Electronics Conference, pp. 258-262, 2015.
    [8] M. Hillman, K. Hagan, S. Hagan, J. Jepson and R. Orpwood, “The weston wheelchair mounted assistive robot”, Printed in the United Kingdom, pp. 305-310, 2011.
    [9] X. Jjie, G. Grindle, B. Salatin, J. Vazquez, H. Wang, D. Ding and A. Cooper, “Enhanced bimanual manipulation assistance with the personal mobility and manipulation appliance”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5042-5047, 2010.
    [10] S. Udhaya and V. Mammen, “EOG based wheelchair control for quadriplegics”, International Conference on Innovations in Information, Embedded and Communication Systems, pp. 1-4, 2015.
    [11] V. Maheu, F. Routhier, J. Frappier, S. Archambault, “Evaluation of the JACO robotic arm clinicoeconomic study for powered wheelchair users with upperextremity disabilities”, IEEE International Conference on Rehabilitation Robotics Rehab Week Zurich, 2011
    [12] A. Erdogan and D. Argall, “The effect of robotic wheelchair control paradigm and interface on user performance, effort and preference: An experimental assessment”, Robotics and Autonomous Systems, vol. 94, pp. 282-297, 2017.
    [13] A. Borboni, M. Maddalena, A. Rastegarpanah, M. Saadat and F. Aggogeri, “Kinematic performance enhancement of wheelchair mounted robotic arm by adding a linear drive”, IEEE International Symposium on Medical Measurements and Applications, pp. 1-6, 2016.
    [14] R. Alqasemi and R. Dubey, “Combined mobility and manipulation control of a newly developed 9-DOF wheelchair-mounted robotic arm system”, IEEE International Conference on Robotics and Automation, pp. 4524-4529, 2007.
    [15] K. Halimi and M. Moussa, “Performing complex tasks by users with upper-extremity disabilities using a 6-DOF robotic arm”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, pp. 686-693, 2017.
    [16] A. Tijsma, F. Liefhebber and L. Herder, “Evaluation of new user interface features for the MANUS robot arm”, IEEE 9th International Conference on Rehabilitation Robotics, pp. 258-263, 2005.
    [17] C. Balaguer, A. Gimenez, A. Jardon, R. Cabas and R. Correal, “Live experimentation of the service robot applications for elderly people care in home environments”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2345-2350, 2005.
    [18] B. Rapacki, C. Niezrecki and A. Yanco, “An underactuated gripper to unlatch door knobs and handles”, IEEE International Conference on Technologies for Practical Robot Applications, pp. 135-140, 2009.
    [19] 張程皓,「結合行動裝置之全向移動電動輪椅控制器開發」,碩士論文,元智大學機械工研究所,民國103年。
    [20] 賴昱瑋,「具立控制之仿人機械手臂開發」,碩士論文,長庚大學機械工程研究所,民國98年。
    [21] 劉再發,「設計發展機械手臂輔助系統於中風病人的上肢評估與訓練」,碩士論文,成功大學機械工程研究所,民國95年。

    無法下載圖示 全文公開日期 2022/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE