簡易檢索 / 詳目顯示

研究生: 陳漢雄
Hen-Shiung Chen
論文名稱: 機械手臂混合位置/阻抗控制之研究
A Study of Hybrid Position/Impedance Control for Robot Arm
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 林其禹
Chyi-Yeu Lin
黃昌群
Chang-Chiun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 阻抗控制混合位置/阻抗控制六軸機械手臂
外文關鍵詞: Impedance Control, Hybrid Position/Impedance Control, Six-DOF Robot Arm
相關次數: 點閱:210下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今機器手臂與環境面接觸的應用上,力量控制為其相當重要的課題。為了在位置控制模式下也能夠達到力量控制的要求,因此本論文設計混合位置/阻抗控制理論,採用阻抗控制讓機械手臂擁有虛擬阻尼、彈簧的順應環境面的功能,可以依據接觸力量與力矩資訊修正手臂位置與姿態,克服任務失敗或機械損壞之狀況,並且搭配位置控制提高任務之位置準確性。
    本研究以自行開發之六軸機械手臂裝載力量感測器,透過力量回授資訊經順應性控制法則計算位置誤差,機械手臂調整位置誤差而賦予順應外力的能力。本論文設計兩種實驗,首先對於順應外力之阻抗控制參數調變進行討論,依據實驗結果來分析阻抗參數對系統之位置與力量響應之關係,根據任務的需求來對阻抗參數進行調整;再者進行圓銷與圓形孔洞之插銷實驗來驗證混合位置/阻抗控制法則,由實驗證實混合位置/阻抗控制在時間與位置有較佳的控制。


    Force control is an essentially critical issue on the application between current robot arms and the contacting environment. To obtain the demand of force control with the position-controlled mode, we propose the compliance control of a hybrid position/impedance control. In this paper, robot arms adopt impedance control with virtual damping and the function of compliance to the environment like springs, which possibly modify the position and gesture of arms according to the contacted force and moment to prevent the fail of mission and the damaging situation. Moreover, it rises the positional precise while collaborating with position-control mode.
    This research uses a six-DOF robot arm, self-designed by our laboratory, loading a six-DOF-sensor to gather information by force feedback to calculate the positional errors and for obtain the compliant capability of adjusting to the external force by correcting position of robot arm. We design two experiments to proof the algorithm. Firstly, we discuss the parameters of impedance control for the compliance external force. According to the experimental results, we analyze the relationship between position and force in the system by the corresponding relationship with impendence controlled parameters, and modulate the parameters of impedance control for the mission demand. Secondly, forward a task of the Peg-In-Hole, to verify the purpose of automated assembly using proposed the hybrid position/impedance control. The control method we presented could perform a better performance.

    摘 要 III Abstract IV 誌 謝 VI 目 錄 VII 圖 索 引 X 表 索 引 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 被動式順應性運動控制 3 1.2.2 主動式順應性運動控制 4 1.2.2.1 混合運動控制 5 1.2.2.2 阻抗控制 6 1.2.3 插銷任務 7 1.3 研究動機與目的 10 1.4 論文架構 11 第二章 方法描述 12 2.1 阻抗控制基礎理論 12 2.2 機械手臂位置為基礎之阻抗控制 15 2.3 機械手臂姿態轉變之阻抗控制 17 2.4 混合位置/阻抗控制 24 2.5 標準二階系統暫態響應 27 第三章 機械手臂運動學分析 30 3.1 齊次矩陣 30 3.2 Denavit-Hartenberg法 33 3.3 正向運動學 36 3.4 反向運動學 40 3.5 微分運動學 43 第四章 六軸機械手臂系統硬體架構 48 4.1 致動器 49 4.1.1 馬達及驅動器 49 4.1.2 減速機 51 4.2 介面卡 53 4.2.1 運動控制卡 53 4.2.2 資料擷取卡 54 4.3 感測器 55 4.3.1 力量感測器 55 4.3.2 光學感測器 56 4.4 機械手臂之終端效果器 57 第五章 實驗與結果討論 58 5.1 機械手臂順應外力實驗 58 5.1.1 順應外力之實驗設計 58 5.1.2 順應外力之實驗結果 60 5.2 插銷任務實驗 69 第六章 結論與未來展望 77 參考文獻 79

    [1] Austin, D. and McCarragher, B., “Force Control Command Synthesis for Assembly using a Discrete Event Framework,” Proceedings, 1997 IEEE International Conference on Robotics and Automation, Vol.2, pp. 933-938 (1997).
    [2] Broenink, Jan F. and Tiernego Martin, L. J., ” Peg-in-Hole Assembly using Impedance Control with a 6 DOF Robot,” Proceedings, 8th European Simulation Symposium, "Simulation in Industry", Oct. 24-26 1996, Genoa, Italy, A. G. Bruzzone and E.H.J. Kerckhoffs, SCS, pp. 504-508 (1996).
    [3] Birkhimer, C. E., “Extracting Human Strategies for Use in Robotic Assembly,” Department of Electrical Engineering and Computer Science of Case Western Reserve University School of Graduate Studies (2005).
    [4] Chin, P. C. and Waldron, K. J., “Hybrid Velocity/Force Control of Manipulators using PID Controller and Feedforward Compensation”, 2nd IEEE Conference on Control Applications, Vol.1, pp. 403-408 (1993).
    [5] Chan, S. P. and Liaw, H. C., “Generalized Impedance Control of Robot for Assembly Tasks Requiring Compliant Manipulation,”, IEEE Transactions on Industrial Electronics, Vol. 43, pp. 453-461 (1996).
    [6] Chen, H., Wang, J., Zhang, G., Fuhlbrigge, T. and Kock, S., “Robotic Soft Servo for Industrial High Precision Assembly,” IEEE Conference on Robotics, Automation and Mechatronics, pp. 24-29 (2008).
    [7] Caine, M. E., Lozano-Perez, T., and Seering, W. P., “Assembly Strategies for Chamferless parts,” Proceedings, 1989 IEEE International Conference on Robotics and Automation, Vol.1, pp. 472-477 (1989).
    [8] Hogen, N., “Impedance Control: An approach to Manipulation: Part I-Theory, Part II-Implementation, Part III-An Approach to Manipulation,” ASME Journal of Dynamic System, Measurement, and Control, Vol. 107, pp. 1-24 (1985).
    [9] In-Wook, K. Dong-Jin, L. and Kab-Il, K., “Active Peg-In-Hole of Chamferless Parts using Force/Moment Sensor,” Proceedings, 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.2, pp. 948-953 (1999).
    [10] Jatta, F., Legnani, G. Visioli, A. and Ziliani G., “On the use of Velocity Feedback in Hybrid Force/Velocity Control of Industrial Manipulators”, Control Engineering Practice, Vol.14, pp. 1045-1055 (2006).
    [11] Kucuk S. and Bingul Z., “The Inverse Kinematics Solutions of Industrial Robot Manipulators,” Proceedings of the IEEE International Conference on Mechatronics, pp. 274-279 (2004).
    [12] Lopes, A. and Almeida, F., “A Force-Impedance Controlled Industrial Robot using an Active Robotic Auxiliary Device,” Robotics and Computer-Integrated Manufacturing, Vol. 24, pp. 299-309 (2008).
    [13] Myun Joong, H., Seong Youb, C., and Doo Yong, L., “Compliant Motion Planning for Two Manipulators Via Human Demonstration, “ Proceedings, 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol.1, pp. 423-428 (2003).
    [14] Mason, M. T., “Compliance and Force Control for Computer Controlled Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 6, pp. 418-312 (1981).
    [15] Nevins, J. L. and Whitney, D. E., “Research on Advanced Assembly Automation,” Computer, Vol. 10, pp. 24-38 (1977).
    [16] Park, Y. K. and Cho, H. S.,”A Fuzzy Rule-based Assembly Algorithm for Precision Parts Mating,” Mechatronics, Vol. 3, pp. 433-450 (1993).
    [17] Raibert, M. H. and Craig, J. J., “Hybrid Position/Force Control of Manipulators,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 103, pp. 275-282 (1981).
    [18] Radin, B. and Gershon, D., “Fuzzy Compliance Control of Robotic assembly tasks,” in Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence, Proceedings of the Third IEEE Conference, Vol.2, pp. 819-824 (1994).
    [19] Shahinpoor, M. and Zohoor, H., “Analysis of Dynamic Insertion Type Assembly for Manufacturing Automation,” Proceedings, 1991 IEEE International Conference on Robotics and Automation, Vol.3, pp. 2458-2464 (1991).
    [20] Shadpey, F., Talebi, H. A., Jayender, J. and Patel, R. V., “A Robust Position and Force Control Strategy for 7-DOF Redundant Manipulators,” IEEE/ASME Transactions on Mechatronics, Vol. 14, pp. 575-589 (2009).
    [21] Tsumugiwa, T., Yokogawa, R., and Hara, K., “Variable Impedance Control with Virtual Stiffness for Human-Robot Cooperative Peg-In-Hole Task,” IEEE/RSJ International Conference on Intelligent Robots and System, Vol.2, pp. 1075-1081 (2002).

    [22] Whitney, D. E., “Quasi-Static Assembly of Compliantly Supported Rigid Part,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 104, No.1, pp.65-77 (1982).
    [23] Yoshikawa, T., “Force Control of Robot Manipulators,” Proceedings of the 2000 IEEE International Conference on Robotics and Automation, Vol.1, pp. 220-226 (2000).
    [24] Zohoor, H. and Shahinpoor, M., “Dynamic Analysis of Peg-In-Hole Insertion for Manufacturing Automation,” Journal of Manufacturing Systems, Vol. 10, pp. 99-108 (1991).
    [25] Zohoor, H. and Shahinpoor, “Analysis of Dynamic Insertion Type Assembly for Manufacturing Automation,” Proceedings, 1991 IEEE International Conference on Robotics and Automation, Vol.3, pp. 2458-2464 (1991).
    [26] Zeng, G. and Hemami, A., “An Overview of Robot Force Control.” Robotica, Vol. 15, pp. 473-482 (1997).
    [27] http://www.ati-ia.com/products/compliance/assembly_compliance_device.aspx
    [28]施慶隆與李文猶,機電整合控制-多軸運動設計與應用,全華圖書股份有限公司,台北,第10-1至10-20頁(2009)。

    QR CODE