簡易檢索 / 詳目顯示

研究生: 陳博銓
Bo-Chiuan Chen
論文名稱: 六軸機械手臂之軌跡規劃與位置控制
Trajectory Planning and Position Control of Six-Axis Robot Arm
指導教授: 邱士軒
Shih-hsuan Chiu
口試委員: 鄧惟中
Wei-chung Teng
溫哲彥
Che-yen Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 軌跡規劃位置控制五次多項式。
外文關鍵詞: projector planning, position control, quintic polynomial
相關次數: 點閱:399下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著產線自動化的需求提升,至今已開發出許多類型之機器手臂,無論是自主完成精密組裝作業、大型或重型搬運工作以及醫療型機械手臂,皆需要穩定與準確的控制機械手臂。機械手臂位置控制的需求不外乎為位置精度、速度及加速度等性能。當機器手臂在快速運轉的過程中,會有多次加速與減速的情形,為了控制機械手臂位置與姿勢於空間中之變化,並使位置、速度與加速度具平滑特性,必須利用軌跡規劃來產生機械手臂的移動軌跡,因此軌跡規劃對於機器手臂控制非常重要。
    為使機械手臂終端效果器的位置與姿勢移動具平滑特性,本研究於作業座標系中使用五次多項式補間法進行軌跡規劃,轉換至直角座標系,並透過反向運動學求解關節位置,再利用差分運算法求得關節轉動之速度與加速度。最後,以位置控制實驗驗證,五次多項式之軌跡規劃,可提高機械手臂位置控制之性能。


    As the increased demand for production line automation, there are many types of robotic arms being developed. Whether the precisely assembling operations, large or heavy handling work, and medical-type robotic arms, all require stable and accurate control of the robotic arm. Robotic arm's control needs nothing more than the speed, acceleration, accuracy and operating range. In the fast-running process of robotic arms, there will be many acceleration and deceleration activies. In order to control the robotic arm's position and orientation of the change in the space and make the position, velocity and acceleration continuous, have to use trajectory planning to generate mechanical arm movement trajectory, so the trajectory planning is very important to control a robotic arm.
    In order to control the robotic arm's position and orientation make continuous, trajectory planning used in this study is quintic polynomial interpolation method, conversion to the cartesian coordinate system, determine the joint position through inverse kinematics. Also, determine rotational speed and acceleration of joint operation by the differential method. In the end, prove the trajectory of quintic of planning by the position control experiments. It can also improve the position control performance of the robotic arm.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第 一 章 緒論 1.1 前言 1.2 研究背景 1.3 研究動機與目的 第 二 章 軌跡規劃 2.1 作業座標系軌跡規劃 2.2 軌跡規劃:五次多項式補間法 2.2.1 連續點到點軌跡規劃 2.3 軌跡規劃:位置部分 2.4 軌跡規劃:姿勢部分 2.5 關節座標系之轉換 第 三 章 六軸機械手臂之運動模型推導 3.1 機械手臂運動學分析 3.2 齊次轉換矩陣 3.2.1 旋轉矩陣(Rotation Matrix) 3.2.2 平移矩陣(Translation Matrix) 3.3 Denavit-Hartenberg參數法 3.4 正向運動學分析 3.5 反向運動學分析 第 四 章 實驗設備 4.1 硬體設備 4.2 介面卡 4.3 致動器與減速裝置 4.4 六軸機械手臂

    [1]Lin, C. S., Chang, P. R., and Luh, J. Y. S., “Formulation and optimization of cubic polynomial joint trajectories for industrial robots,” Proceedings of the IEEE Transactions on Automatic Control, Vol. 28, No. 12, pp. 1066-1074, 1983
    [2]Ata, A.A., “Optimal trajectory planning of manipulators: a review”, Journal of Engineering Science and Technology, Vol. 2, No.1, pp. 32–54, 2007
    [3]Guan, Y., Yokoi, K., Stasse, O. and Kheddar, A., “On robotic trajectory planning using polynomial interpolations,” Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetics, pp. 111–116, 2005
    [4]Liu, H., Lai, X. and Wu, W. “Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints,” Robotics and Computer-Integrated Manufacturing, Vol. 29, No.2, pp. 309–317, 2013
    [5]Gasparetto, A. and Zanotto, V., “Optimal trajectory planning for industrial robots,” Advancs in Engineering Software, Vol. 41, No. 1, pp. 548–556, 2010
    [6]Kong, M., Chen, Z., Ji, C., You, W. and Liu, M., “Optimal point-to-point motion planning of heavy-duty industry robot with indirect method,” Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 768-773, 2013
    [7]Rai, J.K. and Tewari, R., “Quintic polynomial trajectory of biped robot for human-like walking,” International Symposium on Communications, Control and Signal Processing, pp. 360-363, 2014
    [8]Hauser, K. and Ng-Thow-Hing, V., “Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 2493-2498, 2010
    [9]Wang, X. T., Duan, X.G., Huang, Q., Zhao, H.-H., Chen, Y. and Yu, H.T., “Kinematics and Trajectory Planning of a Supporting Medical Manipulator for Vascular Interventional Surgery,” Proceedings of International Conference on Complex Medical Engineering, pp. 406-411, 2011
    [10]Heo, J.W. and Oh, J.H., “Upper Body Motion Interpolation for Humanoid Robots,” Proceedings of Advanced Intelligent Mechatronics, pp. 1064-1069, 2011
    [11]Kong, X., Duan, X., Zhao, H. and Wang, Y. 2011, “An active medical supporting manipulator and experiments for vascular interventional robot,” Proceedings of International Conference on Mechatronics and Automation, pp.617-622, 2012
    [12]Liu, H., Lai, X. and Wu, W., “Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints,” Robotics and Computer-Integrated Manufacturing, Vol. 29, No. 2, pp. 309–317, 2013
    [13]Gasparetto, A. and Zanotto, V., “A New Method for Smooth Trajectory Planning of Robot Manipulators,” Mechanism and Machine Theory, Vol. 42, No. 4, pp. 455–471, 2007
    [14]Kim, J., Kim, S.R., Kim, S.J. and Kim, D.H., “A practical approach for minimum-time trajectory planning for industrial robots”, Industrial Robot, Vol. 37 No. 1, pp. 51-61, 2010
    [15]Xiao, Y., Du, Z. and Dong, W., “Smooth and near time-optimal trajectory planning of industrial robots for online applications,” Industrial Robot, Vol. 39 No. 2, pp. 169-177, 2012
    [16]Bloch, A.M., Reyhanoglu, M. and McClamroch, N.H., “Control and stabilization of nonholonomic dynamic systems,” Proceedings of IEEE Transactions on Automatic Control, Vol. 37, No. 11, pp. 1746-1757, 1992
    [17]Hashemi, E., Ghaffari Jadidi, M., Shah Mohammadi, M.R. and Karimi, M., “In-plane path planning for biped robots based on bezier curve,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 796-801, 2011
    [18]Jeevamalar, J. and Ramabalan, S., “Optimal trajectory planning for autonomous robots - A review,” Proceedings International Conference on Advances in Engineering, Science and Management, pp. 269-275, 2012
    [19]Rai, J.K. and Tewari, R., “Quintic polynomial trajectory of biped robot for human-like walking,” Proceedings International Symposium on Communications, Control and Signal Processing, pp. 360-363, 2014
    [20]Du, Q. and Zhang, X., “Motion planning for the intervention therapy robot system,” Proceedings of International Conference on Advanced Computer Control, Vol. 4, No. 5486886, pp. 606-610, 2010
    [21]Li, Y. and Mo, B., “The trajectory planning of spacecraft based on optimal quintic polynomial,” Proceedings of International Conference on Measurement, Information and Control, Vol. 2, No. 6758098, pp. 865-868, 2013
    [22]Jing, F., Qi, Y., Qiang, T. and Yang, C., “An on-line robot trajectory planning algorithm in joint space with continuous accelerations,” Proceedings of International Conference on Advanced Technology of Design and Manufacture, pp. 372-377, 2010
    [23]Castillo, C.E., Ikeda, T., Matsuura, D. and Takeda, Y., “Circular test, positioning accuracy and repeatability of industrial robots using extrinsic parameters of a camera,” Workshop on Robot Motion and Control, pp. 25-29, 2013
    [24]晉茂林著,「機器人學」,國立編譯館,民國八十九年出版。
    [25]Spong, M. W., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control, John Wiley & Sons, Inc., USA, pp. 163-198, 2006
    [26]Fu, K.S., Gonzalez, R.C. and C.S.G. Lee., Robotics:Control, Sensing, Vision, and Intrlligence, McGraw-Hill, pp. 149-175, 1987
    [27]IRobot,URL:http://store.irobot.com/corp/index.jsp
    [28]捷克科作家Karel Capek的「羅索姆的萬能機器人」劇本,URL:http://www.archive.org/stream/rurrossumsuniver00apekuoft#page/36/mode/2up
    [29]柱座標型機器人,URL:http://cyberneticzoo.com/early-industrial-robots/1958-62-versatran-industrial-robot-harry-johnson-veljko-milenkovic

    無法下載圖示 全文公開日期 2020/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE