簡易檢索 / 詳目顯示

研究生: 劉佳恩
Jia-En Liu
論文名稱: 低電流諧波之三相永磁式同步電動機位置控制系統研製
Development of Position Control System for Three-phase Permanent-magnet Synchronous Motors with Low Current Harmonics
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
郭明哲
Ming-Tse Kuo
劉傳聖
Chuan-Sheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 94
中文關鍵詞: 電壓空間向量脈波寬度調變降低電流諧波含量位置控制s直軸電流鎖住轉子
外文關鍵詞: voltage space vector pulse-width modulation (VSV, current harmonics mitigation control strategy, position control strategy, direct-axis locked rotor control strategy
相關次數: 點閱:452下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製具電流諧波改善之三相永磁式同步電動機位置控制系統。文中採用三相三臂型變頻器以驅動三相永磁式同步電動機,使用電壓空間向量脈波寬調變,以提升直流鏈電壓之利用率。位置及轉速的回授,採解角器搭配解角電路,不僅可偵測絕對位置,亦提高回授訊號之解析度。至於電流諧波改善,則提出將感應電動勢作快速傅立葉分析得其諧波含量,將之轉換至旋轉座標系統之交、直軸上,再以電流控制器加以改善。而在位置閉迴路控制系統方面,本文提出可調式比例增益之位置調節器,在相同位置暫態響應時間下,可降低其位置穩態誤差。
    在穩態時,使用直軸電流以鎖住轉子,使位置的響應不受回授元件的雜訊影響,而造成轉子抖動。另者,本文亦提出穩態抗干擾控制策略,即在外界干擾量施加於電動機時,能快速產生抵抗外力的電磁轉矩,且在外力消失時,不產生位置的超越量,以提升系統的抗干擾能力。
    本文之驅動系統採用32位元數位信號處理器TMS320F28069作為控制核心,其控制策略皆以軟體實現,故可減少電路元件,提高可靠度。電流諧波改善控制之實測結果顯示,三相電流總諧波失真率從5.30 %降至2.31 %,電磁轉矩漣波由15.28 %降至5.98 %。而由位置閉迴路控制系統之實測知,可調式比例增益之位置調節器使位置穩態誤差由 降至 。實測結果驗證了本文方法具可行性。


    The thesis focuses on the development of position control system for three-phase permanent-magnet synchronous motor (PMSM) with reduced current harmonics strategy. A three-leg three-phase inverter is adopted as the driving circuit of three-phase PMSM. Voltage space vector pulse-width modulation method is used for increasing the utility ratio of dc-link voltage. As for the feedback of the rotor positions and rotational speed, the resolver and resolver to digital converter, which not only detect the absolute position of the rotor, but also improve the resolution of feedback signals are used. Whereas, for the current harmonics mitigation control, fast fourier transform is introduced for analyzing the harmonic distortion of back electro-motive-force (EMF). Through transferring harmonic components of back EMF to quadrature- and direct-axis, and compensating them with current controllers, the harmonic distortion of current can be improved. In addition, position controller of adjustable proportional gain which can reduce the steady-state error of position in the same response time is proposed.
    In the steady state, the direct-axis current is used for locking rotor. This can stop the response of position from being affected by noise of feedback elements to cause rotor vibration. Additionally, An anti-interference control strategy is proposed to yield electromagnetic torque instantaneously to resist disturbing forces exerted on the rotor, resulting in no position overshoot in the steady state, thereby enhancing the interference immunity of the system.
    The 32-bit digital signal processor, TMS320F28069, is adopted as the control core. The control strategy is completed by software program for cost reduction and reliability enhancement. The experimental results of current harmonics mitigation control show that the total harmonic distortion of three phase current is reduced from 5.30% to 2.31%, The corresponding torque ripple is reduced from 15.28% to 5.98%. Whereas, the experimental results of position closed-loop control system indicate that properly adjusting the proportional gain of position controller reduces the steady-state error of position from to . In conclusion, the feasibility of the proposed control strategy has been verified by the experimental results.

    摘  要 I Abstract II 誌謝 III 符號索引 VI 圖表索引 XII 第一章 緒論 1 1-1 動機及目的 1 1-2 文獻探討 2 1-3 系統架構及本文特色 4 1-4 本文大綱 7 第二章 三相永磁式同步電動機數學模式及參數量測 8 2-1 前言 8 2-2 三相永磁式同步電動機的模式 8 2-2-1 永磁式同步電動機的三相a b c座標系統模式 8 2-2-2 永磁式同步電動機的旋轉座標系統模式 10 2-3 三相永磁式同步電動機的參數量測 12 2-3-1 三相永磁式同步電動機之感應電動勢及轉子磁通鏈 12 2-3-2 三相永磁式同步電動機之等效電阻 16 2-3-3 三相永磁式同步電動機之等效電感 17 2-4 轉子磁場角位置的回授及校正 18 2-5 機械參數量測 22 2-6 結語 27 第三章 三相永磁式同步電動機驅動器之電流諧波改善策略 28 3-1 前言 28 3-2 三相永磁式同步電動機的感應電動勢估測 28 3-3 轉速閉迴路控制及交直軸電流閉迴路控制策略 33 3-4 交直軸電流閉迴路控制之電流諧波改善策略 40 3-4-1 a b c軸之感應電動勢諧波補償方法 40 3-4-2 交直軸之感應電動勢諧波補償策略方法 42 3-5 實測結果 43 3-6 結語 51 第四章 三相永磁式同步電動機之位置閉迴路控制系統 52 4-1 前言 52 4-2位置閉迴路控制策略 52 4-3穩態抗干擾控制策略 56 4-4 位置閉迴路控制系統的軟體規劃流程 60 4-5 實測結果 68 4-6 結語 83 第五章 結論及建議 84 5-1 結論 84 5-2 建議 85 參考文獻 86 附錄A 數位介面規畫 89 附錄B 電壓回授之規劃 93 附錄C 電流回授之規劃 94

    [1] 施翰誠,"具寬廣速度範圍之三相永磁式同步電動機驅動器研製",國立台灣科技大學電機研究所碩士論文,民國一零四年。
    [2] 童建強,"永磁式同步馬達使用線性霍爾感測器伺服控制及特性參數鑑別",國立交通大學電機與控制工程研究所碩士論文,民國九十五年。
    [3] C. Y. Wu and M. C. Tasi and S. H.Mao, “Characteristics Measurement of Direct-DriveBrushless DC Motors without Using Dynamometers,” International Conference on Electrical Machines and Systems, pp. 1-6, 2009.
    [4] 吳建諭,"永磁馬達特性快速檢測系統設計",國立成功大學機械研究所碩士論文,民國一百年。
    [5] M. Wu and R. Zhao, "Method Analysis and Comparison of SVPWM and SPWM," Control Conference (CCC) 2010 29th Chinese, pp. 3184-3187, 2010.
    [6] H. Bai, Z. Zhao, S. Meng, J. Liu, and X. Sun, "Comparison of Three PWM Strategies-SPWM, SVPWM and One-Cycle Control," The fifth International Conference on Power Electronics and Drive Systems, vol. 2, pp. 1313-1316, 2003.
    [7] S. Sen and U. Datta, "Mathematical Modeling of Sinusoidal Pulse Width Modulated Signal and its Implementation on Microcontroller Based Embedded System," IEEE Transactions on India Conference, pp. 1-4, 2010.
    [8] P. A. Dahono, D. C. P. Akbarifutra and A. Rizqiawan, "Input Ripple Analysis of Five-phase Pulse Width Modulated Inverters," IET Transactions on Power Electronics, vol. 3, no. 5, pp. 716-723, 2010.
    [9] F. Blaschke, “The Principle of Field Orientation as Applied to The New Transvector Closed Loop Control System for Rotating Field Machines,” Siemens Review, vol. 34, pp. 217-220, 1972.
    [10] J. A. Santisteban and R. M. Stephan, "Vector Control Methods for Induction Machines: An Overview," IEEE Transactions on Education, vol. 44, no. 2, pp. 170-174, 2001.
    [11] L. H. Hoang, P. Robert and F. Rene, "Minimization of Torque Ripple in Brushless DC Motor Drives," IEEE Transactions on Industry Applications, vol. 4, no. 4, pp. 748-755, 1986.
    [12] P. Mattavelli, L. Tubiana and M. Zigliotto, "Torque-Ripple Reduction in PM Synchronous Motor Drives Using Repetitive Current Control," IEEE Transactions on Power Electronic, vol. 20, no.6, pp.1423-1431, 2005.
    [13] G. H. Lee, S. I. Kim, J. P. Hong and J. H. Bahn, "Torque Ripple Reduction of Interior Permanent Magnet Synchronous Motor Using Harmonic Injected Current," IEEE Transaction on Magnetics, vol. 44, no. 6, pp. 1582-1585, 2005.
    [14] H. Zhu, X. Xiao and Y. D. Li, "Permanent Magnet Synchronous Motor Current Ripple Reduction with Harmonic Back-EMF Compensation," International Conference on Electrical Machines and Systems, pp. 1094-1097, 2010.
    [15] 魏孝哲,"六臂型變流器之三相永磁式同步電動機驅動器之電流諧波抑制控制策略",國立台灣科技大學電機研究所博士論文,民國一零四年。
    [16] 林家輝,"三相永磁式同步電動機驅動器電流諧波之改善",國立台灣科技大學電機研究所碩士論文,民國一零四年。
    [17] N. Nakao and K. Akatsu, "A new control method for torque ripple compensation of permanent magnet motors," International Power Electronics Conference, pp. 1421-1427, 2010.
    [18] 林子彥,"六相永磁式同步電動機驅動器電流諧波改善之研究",國立台灣科技大學電機研究所碩士論文,民國一百年。
    [19] P. Zhang, G. Y. Sizov and N. A. O. Demerdash, "Comparison of Torque Ripple Minimization Control Techniques in Surface-mounted Permanent Magnet Synchronous Machines," IEEE International Electronics Machines and Drives Conference, pp. 188-193, 2011.
    [20] 劉昌煥,交流電機控制,東華書局,民國九十年。
    [21] 許家章,"應用於自動門之永磁式同步電動機驅動器研製",國立台灣科技大學電機研究所碩士論文,民國一百零四年。
    [22] 劉榮華,"永磁式線性同步電動機位置控制系統之研製",國立台灣科技大學電機研究所碩士論文,民國九十三年。
    [23] 劉志豪,"應用模糊控制於線型永磁式同步伺服馬達速度及定位控制器參數之調適",國立台灣科技大學電機研究所碩士論文,民國八十九年。
    [24] Liu Mingji and Cai Zhongqin, "Adaptive Position Servo Control of Permanent Magnet Synchronous Mortor," Proceedings of the Boston, Massachusetts American Control Conference, pp.84-89, 2004.
    [25] Jongsun Ko, Sungkoo Youn, and Youngil Kim, "A Robust Adaptive Precision Position Control of PMSM," 37th IAS Annual Meeting. Conference Record of the, Pittsburgh, PA, USA, Industry Applications Conference, pp. 120-125, 2002.
    [26] S.-H. Choi, J.-S. Ko, I.-D. Kim, J.-S. Park and S.-C. Hong, and Youngil Kim, "Precise Position Control Using a PMSM with a Disturbance Observer Containing a System Parameter Compensator," Proceedings of the IEEE Electric Power Applications, pp. 1573-1577, 2005.
    [27] T.H. Liu, H.T. Pu and C.K. Lin, "Implementation of an Adaptive Position Control System of a Permanent-Magnet Synchronous Motor and its Application," Electric Power Applications, IET, Vol 4, Issue 2, pp. 121-130, 2010.
    [28] R. Cordero, W. I. Suemitsu, J. O. P. Pinto, A. M. Soares and R. A. Capitanio, "Position control of PMSM based on augmented fuzzy takagi-sugeno SISO models and LMIs," 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, pp. 1952-1957, 2012.
    [29] S. Brock, J. Deskur and K. Zawirski, "Robust Speed and Position Control of PMSM," Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 667-672, 1999.
    [30] S. Chi and Jinsheng Sun, "A Novel Sliding Mode Observer with Multilevel Discontinuous Control for Position Sensorless PMSM Drives," Twenty-Third Annual IEEE, Austin, TX, Applied Power Electronics Conference and Exposition, pp. 127-131, 2008.
    [31] J. Vittek, P. Briš, M. Štulrajter, P. Makyš, V. Comnac and M. Cernat, "Chattering Free Sliding Mode Control Law for the Drive Employing PMSM Position Control," Australasian Universities, Sydney, NSW, Applied Power Engineering Conference, pp. 1-6, 2008.
    [32] Xinkai Wu and Hongpei Xu, "Research on the State Equation of the Position Loop and Speed Loop in the PMSM Cascade Sliding Mode Control," International Conference on Electric Information and Control Engineering, pp. 3553-3555, 2011.
    [33] 湯泰郎,"應用於線型永磁馬達驅動器之定結構滑模定位控制",國立清華大學電機研究所碩士論文,民國九十四年。
    [34] Y. Shi, K. Sun, L. Huang, and H. Ma, "Identification of Permanent Magnet Flux Based on Extended Kalman Filter for IPMSM Drive With Position Sensorless Control," 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, pp. 2252-2257, 2010.

    QR CODE