簡易檢索 / 詳目顯示

研究生: 劉梓傑
Zi-Jie Liu
論文名稱: 應用干擾觀測器於串聯式彈性致動器之運動控制研究
Study on Motion Control of a Series Elastic Actuator Using a Disturbance Observer
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 郭鴻飛
Hung-Fei Kuo
楊振雄
Cheng-Hsiung Yang
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 128
中文關鍵詞: 串聯式彈性制動器位置控制扭力控制干擾觀測器
外文關鍵詞: series elastic actuator, position control, torque control, disturbance observer
相關次數: 點閱:335下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文串聯式彈性致動器(Series Elastic Actuator, SEA)使用扭力彈簧串接馬達以及煞車器或機械手臂的結構,並且分別使用在SEA-煞車器及SEA機械手臂硬體上並進行位置控制及扭力控制。
首先針對扭力彈簧進行模型建模,使用編碼器計算出彈簧角度差,並使用扭力計與彈簧角度差做線性回歸,將傳統零階彈簧方程式改成二階彈簧方程式,其目的為在彈簧變形量動態效應有更精確的擬合結果。接著針對SEA-煞車器上進行建模,求出SEA-煞車器負載的參數,並做位置控制的模擬與實驗及扭力控制的模擬與實驗,並使用干擾觀測器對於SEA-煞車器目的為加強控制的強健性。
最後針對SEA機械手臂進行建模,使用尤拉-拉格朗日方程式(Euler-Lagrange equations)求出機械手臂的動力學方程式,並與SEA、馬達模型進行模型合併,得知完整的SEA機械手臂的動力學模型。接著做SEA機械手臂的位置控制及扭力控制模擬及實驗,並使用干擾觀測器對於SEA機械手臂目的為加強控制的強健性。
實驗部分,本論文硬體致動器使用直流馬達,使用美商儀器(NI)的控制器及使用LabVIEW做程式的撰寫。而模擬部分則是使用MATLAB軟體,由推得的動力學做為系統模型,並根據模擬結果找出可收斂的比例-微分-積分控制器參數以此做為實驗架構的基礎。
最後根據位置控制、扭力控制的模擬與實驗結果,觀察出干擾觀測器對於控制結果進行深入的分析並討論。並根據其結果提出干擾觀測器對於系統控制的強健性有顯著的提升,討論出未來可深入研究之方向。


A series elastic actuator (SEA) is an actuator consisting of a motor in series with a torsion spring. A SEA is usually connected with a brake or a robotic arm to achieve position control and torque control.
In this thesis, first, a torsion spring is modeled based on a linear regression, where two encoders are used to calculate the spring deflection and a torque sensor is used to measure the spring torque. In addition, a second-order spring model is proposed to provide accurate fitting results due to the dynamic effect of the spring deflection taken into account. Secondly, the model is applied to a system consisting of a SEA connected with a brake, where the system parameters are determined based on experimental results, and the simulations and experiments of position control and torque control are performed. To enhance the robustness of the control system, a disturbance observer is used to evaluate a disturbance torque. Thirdly, another system consisting of a 3-DOF robotic arm driven by SEAs is modeled, where the Euler-Lagrange equations are used to establish the dynamic equations. Besides, the simulations and experiments of position and torque control are conducted, where two types of disturbance observers are individually designed for position and control.
Regarding to the experimental setup, DC brushed motors are selected to develop SEAs. A controller is implemented by using an embedded system, Compact Rio, manufactured by National Instruments, where the software LabVIEW is used to program the relevant controller codes. The simulations are performed by using the software MATLAB, and the simulation results are the experimental basis of the gains of the proportional-derivative-integral controllers to ensure the convergence of system.
Based on the simulation and experimental results of position control and torque control, the performances of the disturbance observers and the controllers are analyzed and discussed. The results show that the disturbance observers provide significant improvements of robustness in the closed-loop control systems.

摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 xi 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 串聯式彈性致動器應用 2 1.2.2 串聯式彈性致動器控制介紹 4 1.2.3 干擾觀測器 5 1.3 研究動機 6 1.4 研究方法 7 1.5 論文架構 8 第2章 串聯式彈性致動器模型介紹 9 2.1 SEA-煞車器數學式模型分析 9 2.1.1 馬達模型 9 2.1.2 SEA數學式 11 2.1.3 SEA-煞車器數學式 11 2.2 SEA機械手臂模型分析 14 2.2.1 動力學 14 2.2.2 Denavit-Hartenberg (D-H)矩陣 16 2.2.3 機械手臂動能與位能分析 20 2.2.4 SEA機械手臂總動力學方程式 23 第3章 SEA控制架構與理論 25 3.1 干擾觀測器(disturbance observe, DOB)架構 25 3.2 位置控制 27 3.2.1 SEA-煞車器PID控制 27 3.2.2 SEA-煞車器PID含干擾觀測器控制 29 3.2.3 SEA機械手臂PID控制 30 3.2.4 SEA機械手臂PID含干擾觀測器控制 32 3.3 扭力控制 34 3.3.1 SEA-煞車器PID控制 34 3.3.2 SEA-煞車器PID含干擾觀測器控制 35 3.3.3 SEA機械手臂PID控制 36 3.3.4 SEA機械手臂PID含干擾觀測器控制 38 第4章 實驗規劃 41 4.1 SEA-煞車器硬體架構說明 41 4.1.1 SEA-煞車器實驗平台 41 4.1.2 控制器規格 42 4.1.3 直流有刷馬達 47 4.1.4 扭力計規格 49 4.1.5 煞車器規格 51 4.1.6 編碼器規格 52 4.2 SEA-煞車器參數估測 54 4.2.1 負載參數估測 54 4.2.2 彈簧參數估測 56 4.2.3 SEA-煞車器模型驗證 61 4.3 SEA機械手臂硬體架構說明 61 4.3.1 SEA機械手臂硬體介紹 63 4.3.2 編碼器(負載端、馬達端)介紹 63 4.4 SEA機械手臂參數估測 65 4.5 干擾觀測器驗證 69 4.5.1 SEA-煞車器位置干擾觀測器驗證 69 4.5.2 SEA-煞車器扭力干擾觀測器驗證 72 4.5.3 SEA機械手臂位置干擾觀測器驗證 73 4.5.4 SEA機械手臂扭力干擾觀測器驗證 75 4.6 系統流程說明 77 4.6.1 系統硬體流程 77 4.6.2 系統硬體流程 79 第5章 模擬與實驗 82 5.1 位置控制 82 5.1.1 SEA-煞車器位置控制 82 5.1.2 SEA機械手臂位置控制 88 5.2 扭力控制 102 5.2.1 SEA-煞車器扭力控制 102 5.2.2 SEA機械手臂扭力控制 109 5.3 討論 123 第6章 結論及未來方向 124 6.1 結論 124 6.2 未來方向 125 參考文獻 126

[1] G. A. Pratt and M. M. Williamson, "Series elastic actuators," in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 399-406, 1995.
[2] D. W. Robinson, J. E. Pratt, D. J. Paluska, and G. A. Pratt, "Series elastic actuator development for a biomimetic walking robot," in 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399), pp. 561-568, 1999.
[3] J. Pratt, B. Krupp, and C. Morse, "Series elastic actuators for high fidelity force control," Industrial Robot: An International Journal, vol. 29, no. 3, pp. 234-241, 2002.
[4] K. Kong, J. Bae, and M. Tomizuka, "A compact rotary series elastic actuator for human assistive systems," IEEE/ASME Transactions on Mechatronics, vol. 17, no. 2, pp. 288-297, 2011.
[5] Y. Hori, "A review of torsional vibration control methods and a proposal of disturbance observer-based new techniques," IFAC Proceedings Volumes, vol. 29, no. 1, pp. 990-995, 1996.
[6] K. Kong, J. Bae, and M. Tomizuka, "Control of rotary series elastic actuator for ideal force-mode actuation in human–robot interaction applications," IEEE/ASME Transactions on Mechatronics, vol. 14, no. 1, pp. 105-118, 2009.
[7] D. Ragonesi, S. Agrawal, W. Sample, and T. Rahman, "Series elastic actuator control of a powered exoskeleton," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3515-3518, 2011.
[8] W. Roozing, Z. Li, G. A. Medrano-Cerda, D. G. Caldwell, and N. G. Tsagarakis, "Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility," IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 1080-1091, 2015.
[9] F. Patané, S. Rossi, F. Del Sette, J. Taborri, and P. Cappa, "WAKE-up exoskeleton to assist children with Cerebral Palsy: design and preliminary evaluation in level walking," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 7, pp. 906-916, 2017.
[10] H. Vallery, J. Veneman, E. Van Asseldonk, R. Ekkelenkamp, M. Buss, and H. Van Der Kooij, "Compliant actuation of rehabilitation robots," IEEE Robotics & Automation Magazine, vol. 15, no. 3, pp. 60-69, 2008.
[11] T. Boaventura et al., "On the role of load motion compensation in high-performance force control," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4066-4071, 2012.
[12] J. N. Yun, J. Su, Y. I. Kim, and Y. C. Kim, "Robust disturbance observer for two-inertia system," IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2700-2710, 2012.
[13] S. Oh and K. Kong, "High-precision robust force control of a series elastic actuator," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 71-80, 2016.
[14] G. A. Pratt, "Low impedance walking robots," Integrative and Comparative Biology, vol. 42, no. 1, pp. 174-181, 2002.
[15] T. Lens and O. von Stryk, "Design and dynamics model of a lightweight series elastic tendon-driven robot arm," in 2013 IEEE International Conference on Robotics and Automation, pp. 4512-4518, 2013.
[16] N. L. Tagliamonte, D. Accoto, and E. Guglielmelli, "Rendering viscoelasticity with series elastic actuators using cascade control," in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2424-2429, 2014.
[17] W. M. dos Santos, G. A. Caurin, and A. A. Siqueira, "Design and control of an active knee orthosis driven by a rotary series elastic actuator," Control Engineering Practice, vol. 58, pp. 307-318, 2017.
[18] S. Heidarzadeh, M. Sharifi, H. Salarieh, and A. Alasty, "A Novel Robust Model Reference Adaptive Impedance Control Scheme for an Active Transtibial Prosthesis," Robotica, vol. 37, no. 9, pp. 1562-1581, 2019.
[19] N. Paine, S. Oh, and L. Sentis, "Design and control considerations for high-performance series elastic actuators," IEEE/ASME Transactions on Mechatronics,vol. 19, no. 3, pp. 1080-1091, 2013.
[20] S. Kim and J. Bae, "Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using model-inverse time delay control," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1392-1400, 2017.
[21] J. Bae, K. Kong, and M. Tomizuka, "Gait phase-based smoothed sliding mode control for a rotary series elastic actuator installed on the knee joint," in Proceedings of the 2010 American Control Conference, pp. 6030-6035, 2010.
[22] M. Wang, L. Sun, W. Yin, S. Dong, and J. Liu, "A novel sliding mode control for series elastic actuator torque tracking with an extended disturbance observer," in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2407-2412, 2015.

[23] K. S. Eom, I. H. Suh, W. K. Chung, and S.-R. Oh, "Disturbance observer based force control of robot manipulator without force sensor," in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 4, pp. 3012-3017, 1998.
[24] W.-H. Chen, "Disturbance observer based control for nonlinear systems," IEEE/ASME Transactions on Mechatronics, vol. 9, no. 4, pp. 706-710, 2004.
[25] Z.-J. Yang, Y. Fukushima, and P. Qin, "Decentralized adaptive robust control of robot manipulators using disturbance observers," IEEE Transactions on Control Systems Technology, vol. 20, no. 5, pp. 1357-1365, 2011.
[26] E. Sariyildiz, G. Chen, and H. Yu, "Robust position control of a novel series elastic actuator via disturbance observer," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5423-5428, 2015.
[27] M. Wang, L. Sun, W. Yin, S. Dong, and J. Liu, "Nonlinear disturbance observer based torque control for series elastic actuator," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 286-291, 2016.
[28] A. Mohammadi, M. Tavakoli, H. J. Marquez, and F. Hashemzadeh, "Nonlinear disturbance observer design for robotic manipulators," Control Engineering Practice, vol. 21, no. 3, pp. 253-267, 2013.
[29] Q.-G. Wang, T.-H. Lee, H.-W. Fung, Q. Bi, and Y. Zhang, "PID tuning for improved performance," IEEE Transactions on Control Systems Technology, vol. 7, no. 4, pp. 457-465, 1999.
[30] P. Meshram and R. G. Kanojiya, "Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor," in IEEE International Conference on Advances in Engineering, Science and Management (ICAESM-2012), pp. 117-122, 2012.
[31] Ú. B. Ferraz, P. F. Seixas, and W. E. Aguiar, "A Simplified Model for Mechanical Loads under Angular Misalignment and Unbalance," World Academy of Science, Engineering and Technology, vol. 7, no. 7, pp. 2006-2013, 2013.
[32] V. Fedák, P. Záskalický, and Z. Gelvanič, "Analysis of Balancing of Unbalanced Rotors and Long Shafts using GUI MATLAB," in MATLAB Applications for the Practical Engineer, IntechOpen, 2014.

無法下載圖示 全文公開日期 2025/02/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE