簡易檢索 / 詳目顯示

研究生: 魏千鈞
Chien-Chen Wei
論文名稱: 以氧電漿處理多層二硒化鎢及其光電特性之研究
Study of Electrical and Optical Characteristics of Multi-layer Tungsten Diselenide with Oxygen Plasma Treatment
指導教授: 李奎毅
Kuei-Yi Lee
林保宏
Pao-hung Lin
口試委員: 李奎毅
Kuei-Yi Lee
林保宏
Pao-hung Lin
陳瑞山
Ruei-San Chen
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 二硒化鎢氧電漿處理光感測器
外文關鍵詞: tungsten diselenide, oxygen plasma treatment, photodetector
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中二硒化鎢是一種p型半導體,它擁有良好的光電特性,例如載子遷移率和光響應度。不過在半導體的元件應用當中,需要有n型材料與p型材料搭配。因此,本研究中我們透過氧電漿對二硒化鎢進行處理,因為材料表面形成鎢的氧化物,使材料從p型變為n型半導體。隨著電漿功率的增強,二硒化鎢的電荷中性點從65 V移動到-125 V;並分別利用X射線光電子能譜儀確認氧原子比例的增減和WOx (x≦3) 的鍵結方式。我們使用絕緣遮罩,只處理半邊的二硒化鎢,在單質材料上製作pn二極體;透過電流-電壓特性曲線,確認此pn二極體表現。接著將此二硒化鎢二極體應用到半波整流電路中,輸入電壓峰對峰值為6 V,工作頻率從1 Hz至500 Hz。最後的應用將二硒化鎢二極體製作為光二極體,以二硒化鎢吸光度較佳的405 nm雷射進行光感測器實驗,外加逆向偏壓為0.1 V;另外也製作未經電漿處理與整面電漿處理的二硒化鎢樣品作為光導體,進行光電流量測並比較三種樣品的光學特性。量測結果發現光二極體相較光導體樣品,其光電導率和歸一化光響應度上有顯著提升。因為光二極體設置在逆向偏壓下使空乏區變寬、內建電場增強的緣故,進而促進空乏區內光電流的產生。本研究經由電漿處理的方式,提供一個較低成本並有效製作二極體元件、提升光感測器表現的方法。


    In this study, tungsten diselenide (WSe2) is a p-type semiconductor with outstanding electrical and optical properties such as carrier mobility and photoresponsivity. Nevertheless, in order to form p-n junctions, elementary “building blocks” of semiconductor electronic devices, n-type semiconductor is required. Thus, WSe2 was doped with oxygen plasma, transforming WSe2 from p-type to n-type configuration, which was due to the formation of WOx (x≦3) on the surface. As the power of plasma rising, the charge neautrality point of WSe2 shifted from 65 V to -125 V. After doping, Raman spectroscope was used to determine emerging vibration modes that originated from WSe2. According to X-ray photoelectron spectroscopy and X-ray diffraction measurement, binding of tungsten and oxygen atoms and shifting of 2θ were analyzed, respectively. In addition, homojunction p-n diode was constructed after oxygen plasma treatment with insulated mask which covered a half surface area of multilayer WSe2. Moreover, the performance of WSe2 p-n diode was verified by measuring current-voltage characteristic and applying the diode in half-wave rectifier circuit with Vpp = 6 V and input frequency from 1 Hz to 500 Hz. For further application, WSe2 p-n diode was fabricated as photodiode and demonstrated photocurrent properties in photoconductive mode with illumination of 405 nm laser and bias of 0.1 V. Pristine and oxygen plasma treated WSe2 were measured as well as photoconductors for comparison. Due to reverse bias increased the depletion region width, and electric field in depletion region was increased as well, which lead to the result of WSe2 photodiode performing higher normalized photoresponsivity over which of photoconductors. This study introduced an inexpensive and simple way to fabricate a WSe2 p-n diode and to enhance its electro-optical properties.

    論文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 過渡金屬硫化物 2 1.2.1 二硒化鎢 4 1.2.2 合成與製備 6 1.3 雜質半導體 7 1.3.1 p型半導體 7 1.3.2 n型半導體 7 1.3.3 摻雜方法 8 1.4 pn接面二極體 9 1.5 光電導 11 1.5.1 光電效應 11 1.5.1.1 光伏效應 12 1.5.1.2 光電導效應 13 1.5.1.3 光熱電效應 14 1.5.2 光電導率 15 1.5.3光響應度與量子轉換效率 16 1.5.4 歸一化光電流增益 17 第二章 實驗方法與設備 18 2.1 實驗流程圖 18 2.2 樣品成長與製備 19 2.2.1 二硒化鎢的製備 19 2.2.2 氧電漿處理 20 2.3 分析量測儀器 22 2.3.1 掃描式電子顯微鏡 22 2.3.2 拉曼光譜儀 23 2.3.3 X射線光電子能譜分析 25 2.3.4 X射線繞射分析 26 2.4 電性量測 28 2.4.1 電荷中性點量測 28 2.4.2 pn二極體量測 29 2.5 半波整流電路 29 2.6 光感測器量測 31 第三章 結果與討論 32 3.1 掃描式電子顯微鏡 32 3.2 拉曼光譜圖 33 3.3 X射線光電子能譜 36 3.4 X射線繞射分析 41 3.5 電荷中性點量測 43 3.6 二極體電流-電壓特性曲線 45 3.7 半波整流電路 48 3.8 光感測器 50 3.8.1 光電流量測 50 3.8.2 光電導率 53 3.8.3 歸一化光響應度 56 3.8.4 光感測器之特性分析 58 第四章 結論 59 參考文獻 60

    [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, no. 3, pp. 183-191, 2007.
    [2] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
    [3] J. Chen, S. Lo, S. Ho, S. Wong, T. Vu, X. Zhang, Y. Liu, Y. Chiou, Y. Chen, J. Yang, Y. Chen, Y. Chu, Y. Lee, C. Chung, T. Chen, C. Chen, and C. Wu, "A gate-free monolayer WSe2 pn diode," Nature Communications, vol. 9, no. 1, p. 3143, 2018.
    [4] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-performance single layered WSe2 p-FETs with chemically doped contacts," Nano Letters, vol. 12, no. 7, pp. 3788-92, 2012.
    [5] M. R. Vazirisereshk, A. Martini, D. A. Strubbe, and M. Z. Baykara, "Solid Lubrication with MoS2: A Review," Lubricants, vol. 7, no. 7, p. 57, 2019.
    [6] H. Tributsch, "The MoSe2 Electrochemical Solar Cell: Anodic Coupling of Electron Transfer to d → d Photo-Transitions in Layer Crystals," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 82, no. 2, pp. 169-174, 1978.
    [7] R. Bhandavat, L. David, and G. Singh, "Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes," The Journal of Physical Chemistry Letters, vol. 3, no. 11, pp. 1523-1530, 2012.
    [8] K. Huang, L. Wang, Y. Liu, H. Wang, Y. Liu, and L. Wang, "Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor," Electrochimica Acta, vol. 109, pp. 587-594, 2013.
    [9] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, "2D transition metal dichalcogenides," Nature Reviews Materials, vol. 2, no. 8, p. 17033, 2017.
    [10] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, "3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution," Chemical Communications, vol. 53, no. 21, pp. 3054-3057, 2017.
    [11] W. J. Schutte, J. L. De Boer, and F. Jellinek, "Crystal structures of tungsten disulfide and diselenide," Journal of Solid State Chemistry, vol. 70, no. 2, pp. 207-209, 1987.
    [12] L. C. Upadhyayula, J. J. Loferski, A. Wold, W. Giriat, and R. Kershaw, "Semiconducting Properties of Single Crystals of n‐ and p‐Type Tungsten Diselenide (WSe2)," Journal of Applied Physics, vol. 39, no. 10, pp. 4736-4740, 1968.
    [13] J. Chang, L. F. Register, and S. K. Banerjee, "Ballistic performance comparison of monolayer transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors," Journal of Applied Physics, vol. 115, no. 8, p. 084506, 2014.
    [14] N. R. Pradhan, D. Rhodes, S.Memaran, J. M. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez, A. L. Elias, M. Terrones, P. M. Ajayan, and L. Balicas, "Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors," Scientific Reports, vol. 5, no. 1, p. 8979, 2015.
    [15] W. Zhang, M. Chiu, C. Chen, W. Chen, L. Li, and A. T. S. Wee, "Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers," ACS Nano, vol. 8, no. 8, pp. 8653-8661, 2014.
    [16] D. A. Nguyen, H. M. Oh, N. T. Duong, S. Bang, S. J. Yoon, and M. S. Jeong, "Highly Enhanced Photoresponsivity of a Monolayer WSe2 Photodetector with Nitrogen-Doped Graphene Quantum Dots," ACS Applied Materials & Interfaces, vol. 10, no. 12, pp. 10322-10329, 2018.
    [17] Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, "Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices," Nanotechnology, vol. 27, no. 22, p. 225501, 2016.
    [18] J. Gobrecht, H. Gerischer, and H. Tributsch, "Electrochemical Solar Cell Based on the d-Band Semiconductor Tungsten-Diselenide," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 82, no. 12, pp. 1331-1335, 1978.
    [19] R. Basu and L. J. Atwood, "Electro-optic liquid crystal device employing two-dimensional WSe2 as the planar-alignment layers," Optical Material Express, vol. 10, no. 6, pp. 1405-1412, 2020.
    [20] H. P. B. Rimmington and A. A. Balchin, "The growth by iodine vapour transport techniques and the crystal structures of layer compounds in the series TiSxSe2−x, TiSxTe2−x, TiSexTe2−x," Journal of Crystal Growth, vol. 21, no. 2, pp. 171-181, 1974.
    [21] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, "Growth of molybdenum disulphide using iodine as transport material," Pramana, vol. 63, no. 3, pp. 611-616, 2004.
    [22] M. Muralidhar Singh, G. Vijaya, M. S. Krupashankara, B. K. Sridhara and T. N. Shridha, "Studies on Nanostructure Aluminium Thin Film Coatings Deposited using DC magnetron Sputtering Process," IOP Conference Series: Materials Science and Engineering, vol. 149, p. 012071, 2016.
    [23] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate," Small, vol. 8, no. 7, pp. 966-971, 2012.
    [24] K. Liu, W. Zhang, Y. Lee, Y. Lin, M.Chang, C. Su, C. Chang, H. Li, Y. Shi, H. Zhang, C. Lai, and L. Li, "Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates," Nano Letters, vol. 12, no. 3, pp. 1538-1544, 2012.
    [25] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10451-10453, 2005.
    [26] Y. Hernandez, V. Nicolosi, M. Lotya, B. Fiona M., Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, vol. 3, no. 9, pp. 563-568, 2008.
    [27] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, "Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication," Angewandte Chemie International Edition, vol. 50, no. 47, pp. 11093-11097, 2011.
    [28] D. Mathiot and J. C. Pfister, "Dopant diffusion in silicon: A consistent view involving nonequilibrium defects," Journal of Applied Physics, vol. 55, no. 10, pp. 3518-3530, 1984.
    [29] J. F. Gibbons, "Ion implantation in semiconductors—Part I: Range distribution theory and experiments," Proceedings of the IEEE, vol. 56, no. 3, pp. 295-319, 1968.
    [30] Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, "Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing," ACS Nano, vol. 4, no. 4, pp. 1790-1798, 2010.
    [31] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Photocurrent generation with two-dimensional van der Waals semiconductors," Chemical Society Reviews, vol. 44, no. 11, pp. 3691-3718, 2015.
    [32] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, "Mechanisms of Photoconductivity in Atomically Thin MoS2," Nano Letters, vol. 14, no. 11, pp. 6165-6170, 2014.
    [33] M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, "Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions," Scientific Reports, vol. 3, no. 1, p. 1634, 2013.
    [34] Y. Zhang, L. Wang, H. Wang, X. Xie, S. Zhang, R. Liu, and Z. Qiu, "Photothermoelectric and photovoltaic effects both present in MoS2," Scientific reports, vol. 5, p. 7938, 2015.
    [35] W. Zhu, T. Low, Y. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition," Nature Communications, vol. 5, no. 1, p. 3087, 2014.
    [36] M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, "Large and Tunable Photothermoelectric Effect in Single-Layer MoS2," Nano Letters, vol. 13, no. 2, pp. 358-363, 2013.
    [37] T. Yan, X. Qiao, X. Liu, P. Tan, and X. Zhang, "Photoluminescence properties and exciton dynamics in monolayer WSe2," Applied Physics Letters, vol. 105, no. 10, p. 101901, 2014.
    [38] Z. Dashevsky, V. Kasiyan, S. Asmontas, J. Gradauskas, E. Shirmulis, E. Flitsiyan, and L. Chernyak, "Photothermal effect in narrow band gap PbTe semiconductor," Journal of Applied Physics, vol. 106, no. 7, p. 076105, 2009.
    [39] J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, "Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride," Scientific Reports, vol. 9, no. 1, p. 6048, 2019.
    [40] Y. Kraftmakher, "Experiments on photoconductivity," European Journal of Physics, vol. 33, no. 3, pp. 503-511, 2012.
    [41] R. Abdalrheem, F. K. Yam, A. R. Ibrahim, H. S. Lim, K. P. Beh, A. A. Ahmed, A. A. Oglat, K. M. Chahrour, O. F. Farhat, N. Afzal, S. M. Mohammad, and M. Z. Mat Jafri, "Improvement in Photodetection Characteristics of Graphene/p-Silicon Heterojunction Photodetector by PMMA/Graphene Cladding Layer," Journal of Electronic Materials, vol. 48, no. 6, pp. 4064-4072, 2019.
    [42] C. Lin, R. Chen, T. Chen, H. Chen, Y. Chen, R. Chen, and L. Chen, "High photocurrent gain in SnO2 nanowires," Applied Physics Letters, vol. 93, pp. 112115-112115, 2008.
    [43] R. Chen, H. Chen, C. Lu, K. Chen, C. Chen, L. Chen, and Y. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Applied Physics Letters, vol. 91, no. 22, p. 223106, 2007.
    [44] R. Chen, W. Wang, C. Chan, H. Hsu, L. Tien, and Y. Chen, "Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition," Nanoscale Research Letters, vol. 8, no. 1, p. 443, 2013.
    [45] J. B. Legma, G. Vacquier, and A. Casalot, "Chemical vapour transport of molybdenum and tungsten diselenides by various transport agents," Journal of Crystal Growth, vol. 130, no. 1, pp. 253-258, 1993.
    [46] I. Ettah and L. Ashton, "Engaging with Raman Spectroscopy to Investigate Antibody Aggregation," Antibodies, vol. 7, no. 3, p. 24, 2018.
    [47] A. C. Reimschuessel, "Scanning electron microscopy - Part I," Journal of Chemical Education, vol. 49, no. 8, p. A413, 1972.
    [48] C. G. Pope, "X-Ray Diffraction and the Bragg Equation," Journal of Chemical Education, vol. 74, no. 1, p. 129, 1997.
    [49] M. Frentrup, N. Hatui, T. Wernicke, J. Stellmach, A. Bhattacharya, and M. Kneissl, "Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction," Journal of Applied Physics, vol. 114, no. 21, p. 213509, 2013.
    [50] S. Baskaran, "Structure and Regulation of Yeast Glycogen Synthase," 2010.
    [51] K. S. Figueroa, N. J. Pinto, S. V. Mandyam, M. Zhao, C. Wen, P. Masih Das, Z. Gao, M. Drndić, and A. T. Charlie Johnson, "Controlled doping of graphene by impurity charge compensation via a polarized ferroelectric polymer," Journal of Applied Physics, vol. 127, no. 12, p. 125503, 2020.
    [52] H. Liu, Y. Liu, and D. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, vol. 21, no. 10, pp. 3335-3345, 2011.
    [53] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, "Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2," Optics Express, vol. 21, no. 4, pp. 4908-4916, 2013.
    [54] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, "Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2," Nanoscale, vol. 5, no. 20, pp. 9677-83, 2013.
    [55] C. Sourisseau, F. Cruege, M. Fouassier, and M. Alba, "Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2," Chemical Physics, vol. 150, no. 2, pp. 281-293, 1991.
    [56] A. Molina-Sánchez and L. Wirtz, "Phonons in single-layer and few-layer MoS2 and WS2," Physical Review B, vol. 84, no. 15, p. 155413, 2011.
    [57] E. del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M. Nguyen, T. E. Mallouk, M. Terrones, and M. A.Pimenta, , "Excited Excitonic States in 1L, 2L, 3L, and Bulk WSe2 Observed by Resonant Raman Spectroscopy," ACS Nano, vol. 8, no. 9, pp. 9629-9635, 2014.
    [58] M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz, "Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates," Journal of Solid State Chemistry, vol. 67, no. 2, pp. 235-247, 1987.
    [59] M. Jamali and F. Shariatmadar Tehrani, "Effect of synthesis route on the structural and morphological properties of WO3 nanostructures," Materials Science in Semiconductor Processing, vol. 107, p. 104829, 2020.
    [60] S. Wang, M. Wang, S. Chen, Y. Li, T. Shen, H. Bor, and C. Wei, "Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology," Sensors (Basel), vol. 18, no. 9, p. 2803, 2018.
    [61] M. Yamamoto, S. Dutta, S. Aikawa, S. Nakaharai, K. Wakabayashi, M. S. Fuhrer, K. Ueno, and K. Tsukagoshi, "Self-Limiting Layer-by-Layer Oxidation of Atomically Thin WSe2," Nano Letters, vol. 15, no. 3, pp. 2067-2073, 2015.
    [62] P. Pyykkö, "Refitted tetrahedral covalent radii for solids," Physical Review B, vol. 85, no. 2, p. 024115, 2012.
    [63] Y. Chen and X. L. Xu, "Effect of oxygen deficiency on optical band gap shift in Er-doped ZnO thin films," Physica B: Condensed Matter, vol. 406, no. 17, pp. 3121-3124, 2011.
    [64] C. Sah, R. N. Noyce, and W. Shockley, "Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics," Proceedings of the IRE, vol. 45, no. 9, pp. 1228-1243, 1957.
    [65] K. Akkiliç, T. Kiliçoğlu, and A. Türüt, "Linear correlation between barrier heights and ideality factors of Sn/n-Si schottky diodes with and without the interfacial native oxide layer," Physica B: Condensed Matter, vol. 337, no. 1, pp. 388-393, 2003.
    [66] C. A. Nijhuis, W. F. Reus, A. C. Siegel, and G. M. Whitesides, "A Molecular Half-Wave Rectifier," Journal of the American Chemical Society, vol. 133, no. 39, pp. 15397-15411, 2011.
    [67] M. Lucía, J. Hernandez, C. Leon, and I. Mártil, "Capacitance measurements of p-n junctions: Depletion layer and diffusion capacitance contributions," European Journal of Physics, vol. 14, pp. 86, 1999.
    [68] M. Yilmaz, B. A. Tunkar, S. Park, K. Elrayes, M. A. E. Mahmoud, E. Abdel-Rahman, and M. Yavuz, "High-efficiency passive full wave rectification for electromagnetic harvesters," Journal of Applied Physics, vol. 116, no. 13, p. 134902, 2014.
    [69] X. Yu, M. S. Prévot, N. Guijarro, and K. Sivula, "Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production," Nature Communications, vol. 6, no. 1, p. 7596, 2015.
    [70] C. K. Dass, M. A. Khan, G. Clark, J. A. Simon, R. Gibson, S. Mou, X. Xu, M. N. Leuenberger, and J. R. Hendrickson, "Ultra-Long Lifetimes of Single Quantum Emitters in Monolayer WSe2/hBN Heterostructures," Advanced Quantum Technologies, vol. 2, no. 5-6, p. 1900022, 2019.
    [71] N. M. Vuong, H. N. Hieu, and D. Kim, "An edge-contacted pn-heterojunction of a p-SWCNT/n-WO3 thin film," Journal of Materials Chemistry C, vol. 1, no. 33, pp. 5153-5160, 2013.
    [72] P. M. Pataniya, C. K. Zankat, M. Tannarana, A. Patel, S. Narayan, G. K. Solanki, K. D. Patel, P.K. Jha, and V. M. Pathak, "Photovoltaic activity of WSe2/Si hetero junction," Materials Research Bulletin, vol. 120, p. 110602, 2019.
    [73] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors," Nano Letters, vol. 14, no. 6, pp. 3347-3352, 2014.
    [74] C. J. Docherty, P. Parkinson, H. J. Joyce, M. Chiu, C. Chen, M. Lee, L. Li, L. M. Herz, and M. B. Johnston, "Ultrafast Transient Terahertz Conductivity of Monolayer MoS2 and WSe2 Grown by Chemical Vapor Deposition," ACS Nano, vol. 8, no. 11, pp. 11147-11153, 2014.
    [75] R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, "Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes," Nano Letter, vol. 14, no. 10, pp. 5590-7, 2014.
    [76] H. S. Lee, J. Ahn, W. Shim, S. Im, and D. K. Hwang, "2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection," Applied Physics Letters, vol. 113, no. 16, p. 163102, 2018.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE