簡易檢索 / 詳目顯示

研究生: 傅彥綺
Yen-Chi Fu
論文名稱: 拋光墊線上量測系統於修整性能分析與銅化學機械拋光之相關性研究
Study on In-Situ Pad Measurement System for Pad Dressing Performance and Cu-CMP Correlation
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 楊棋銘
YANG,CI-MING
左培倫
ZUO,POU-LUN
劉顯光
LIOU,SIAN-GUANG
謝宏麟
Hung-Lin Hsieh
陳炤彰
Chao-Chang A. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 205
中文關鍵詞: 化學機械平坦化彩色共軛焦量測系統拋光墊非均勻性凹陷侵蝕
外文關鍵詞: Chemical Mechanical Planarization, Chromatic Confocal System, Pad Uniformity, Dishing, Erosion
相關次數: 點閱:223下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過自行開發與改良的彩色共軛焦量測系統進行修整製程中,拋光墊表面形貌的量測;此外透過拋光墊修整軌跡模擬軟體,評估拋光墊之修整均勻性。實驗方法為固定修整器轉速15, 40, 65rpm對於拋光盤進行修整,探討實驗後拋光墊修整指標相關性。根據指標相關性係數,實驗A結果拋光墊表面粗糙度的變化對於製程參數具有趨勢性的變化,主要和拋光墊表面非均勻性有關,於修整器轉速為15rpm且拋光盤轉速40rpm為非整除數時,能完整地修整全部拋光墊表面,造成拋光墊表面粗糙度提高而拋光墊之表面粗糙度能作為銅膜晶圓判斷表面非均勻性的指標。實驗B銅圖案化晶圓拋光時間的判斷,最後選用拋光製程為10分鐘,以獲得50%的銅圖案化晶圓拋光面積進行實驗。實驗C將彩色共軛焦量測系統應用於銅圖案化晶圓透過指標相關性分析得拋光製程中產生凹陷及侵蝕的變化與拋光墊Spk指標有-0.4到-0.7間的中度指標相關性。實驗D由固定修整器轉速15rpm進行拋光100片晶圓的馬拉松實驗,得銅膜晶圓的材料移除率與非均勻性對於承載比中的反應區(Spk)分別具有高度(-0.74)和中度(-0.41)相關性指標;銅膜晶圓之表面粗糙度對於拋光墊的Sz具有高度(-0.75)指標相關性。此兩套模擬系統,能觀察與驗證拋光墊表面粗糙度與非均勻性,對應晶圓之指標相關性,未來可將此系統應用於需精準控制之拋光製程環境上。


    This study focuses on the In-Situ chromatic confocal system and correlation between pad dressing performance and the Cu- CMP process with different pad dressing parameters. Changing dresser head rotation speeds (15, 40, and 65 rpm) yields different levels of pad roughness and also creates a different Cu blanket wafer uniformity index for pad roughness in each run. From results of Experiment A, the surface roughness of polishing pads changes with CMP parameters, mainly according to pad non-uniformity. Experiment B estimate CMP time for Cu pattern wafer, it takes about 10 minutes for exposing 50% pattern area. Apply it the chromatic confocal system to copper pattern wafer CMP of Experiment C, the relation between dishing and erosion effect with Spk is -0.4 to -0.7. Experiment D is a marathon test of 100 pieces of copper blanket wafer CMP under 15 rpm. Results show that the MRR and N.U. are highly related to Spk, while the surface roughness is highly related to Sz. By such chromatic confocal system and developes pad uniformity simulation program, pad roughness can be measured and then pad uniformity index can be predicted. Results of this study can be further applied on In-line Cu CMP process control for advanced node demands.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 IX 表目錄 XIII 符號索引 XV 第一章 緒論 1 1.1研究背景 1 1.2研究目的與方法 3 1.3論文架構 4 第二章 文獻回顧 6 2.1拋光墊與化學機械平坦化(CMP)相關性文獻回顧 6 2.2拋光墊之量測方法 11 2.3拋光墊分析方法 16 2.4CMP 拋光機量測系統應用 25 2.5文獻回顧總結 37 第三章 彩色共軛焦線上量測系統 40 3.1即時監控設備機台設計原理與應用 40 3.1.1彩色共軛焦量測設備原理 40 3.1.2系統架構 41 3.1.3 彩色共軛焦量測系統驗證 43 3.2 量測系統軌跡程式 46 3.3 彩色共軛焦系統量測資料分析方法 49 3.4 拋光墊非均勻性模擬程式 53 3.5 終點偵測器 54 第四章 修整指標相關性實驗設備及規劃 55 4.1實驗設備與彩色共軛焦量測系統 55 4.2實驗耗材 57 4.2.1拋光墊 57 4.2.2 晶圓 58 4.2.3 鑽石修整器 63 4.2.4 拋光液 63 4.3量測儀器 66 4.4實驗規劃 67 4.4.1實驗A銅膜晶圓修整之指標相關性 67 4.4.2實驗B銅圖案化晶圓拋光時間評估 69 4.4.3實驗C銅圖案化晶圓修整之指標相關性 70 4.4.4實驗D拋光100片銅膜晶圓-馬拉松實驗 71 第五章 結果與討論 72 5.1實驗A銅膜晶圓與拋光墊之指標相關性 73 5.1.1銅膜晶圓不同修整參數影響相關性指標 74 5.1.2銅薄膜晶圓與拋光墊間指標相關性影響 78 5.1.3拋光墊非均勻性模擬分析 85 5.2銅圖案化晶圓拋光時間評估(實驗B) 86 5.2.1 Motor Current EPD分析 86 5.2.2 定時觀測法 89 5.2.3 直接觀測法 93 5.3銅圖案化晶圓修整之指標相關性(實驗C) 94 5.3.1 修整器轉速比對拋光墊表面粗糙度影響 94 5.3.2 修整器轉速對銅圖案化晶圓影響 96 5.3.3 銅圖案化晶圓不同修整參數影響相關性指標 101 5.4拋光100片銅膜晶圓-馬拉松實驗(實驗D) 103 5.4.1拋光100片銅膜晶圓之相關性指標 103 5.4.2拋光100片銅膜晶圓之拋光墊表面粗糙度指標 106 5.4.3拋光100片銅膜晶圓與拋光墊指標相關性 107 5.5綜合結果與討論 109 第六章 結論與建議 113 6.1 結論 113 6.2 建議 114 附錄A 拋光墊基本性能介紹 119 附錄B 拋光墊總類 120 附錄C 承壓面積比(Bearing Area Ratio, BAR) 123 附錄D 閉迴路系統建立 D-1 CMP 拋光墊修整機制 126 附錄E 彩色共軛焦量測系統驗證 129 附錄F 實驗A銅膜晶圓拋光墊粗糙度變化 160 附錄G 實驗A銅膜晶圓檢測CCI結果 165 附錄H 實驗C銅圖案化晶圓拋光墊粗糙度變化 169 附錄I 實驗D 拋光100片銅膜晶圓拋光墊粗糙度變化 174 附錄J 實驗D銅膜晶圓CCI檢測結果 180

    [1] 蕭宏,"半導體製程技術導論",全華圖書股份有限公司,2015。
    [2] H. Xiao,羅正忠,張鼎張,"半導體製程技術導論," 台灣培
    生教育出版,台北市,2002。
    [3] M. Y. Tsai, et al. "Novel diamond conditioner dressing characteristics of CMP polishing pad." International Journal of Machine Tools and Manufacture 49.9 (2009): 722-729.
    [4] G. Banerjee and R. L. Rhoades, "Chemical Mechanical Planarization Historical Review and Future Direction," ECS Transactions, vol. 13, pp. 1-19, 2008
    [5] 陳冠中, "軟韌性聚氨酯拋光墊之鑽石修整加工分析研究",國立台灣科技大學,機械工程研究所碩士論文,2012.
    [6] S. Choi, M. D. Fiona, and D. David. "A model of material removal and post process surface topography for copper CMP." Procedia Engineering 19 (2011): 73-80.
    [7] B. Suryadevara, "Advances in Chemical Mechanical Planarization (CMP), 2016.
    [8] C-C. A. Chen, Q. P. Pham "Study on diamond dressing of non-uniformity of pad surface topography in CMP Process." The International Journal of Advanced Manufacturing Technology (2017): 1-10.

    [9] S. Del Monaco, et al. "Chemical Mechanical Planarization (CMP) In- Situ pad groove monitor through Fault Detection and Classification (FDC) system." Planarization/CMP Technology (ICPT 2012), International Conference on. VDE, 2012.
    [10] SENSOFAR CO. " Surface Metrology for In-Situ Pad Monitoring in Chemical Mechanical Planarization (CMP)."AZO MATERIALS, 2015.
    [11] 蔡明城,"開發線上監控量測方法與系統應用於拋光墊性能水準分析之研究",2016。
    [12] K. H. Park, et al. "Effects of pad properties on material removal in chemical mechanical polishing." Journal of Materials Processing Technology 187 (2007): 73-76.
    [13] C. Lee, et al. "A study on the correlation between pad property and material removal rate in CMP." International Journal of Precision Engineering and Manufacturing 12.5 (2011): 917-920.
    [14] 陳鈺庭,"拋光墊修整磨合期對銅膜晶圓化學機械拋光影響研究",國立台灣科技大學,機械工程研究所碩士論文,2014。
    [15] 薛慶堂,"化學機械拋光之拋光墊性能分析與平坦化加工研究",國立台灣科技大學,機械工程研究所碩士論文,2011。
    [16] 王柏凱,"雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎行維度和承載比分析",國立台灣科技大學,機械工程研究所碩士論文,2013。
    [17] 黃星豪,"藍寶石晶圓拋光加工之摩擦力與拋光墊機械性質分析研究",國立台灣科技大學,機械工程研究所碩士論文,2013。
    [18] 溫禪儒,"單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究",國立台灣科技大學,機械工程研究所碩士論文,2014。
    [19] 薛旻岳,"電致動力輔助化學機械平坦化之組合式電極盤設計應用於矽導微孔晶圓研究",國立台灣科技大學,機械工程研究所碩士論文,2015。
    [20] T. Tetsuji, N. Keisuke and Y. Satoru, "Method and Apparatus for Dressing Polishing Pad, Profile Measuring Method, Substrate Polishing Apparatus, and Substrate Polishing Method ", US 8870625 B2, 2014.
    [21] P. M. Antoine, W. Y. Hsu, M. S. Hichem M'Saad, "CMP Pad Thickness and Profile Monitoring System ", US8043870 B2, 2011.
    [22] Q. Jun, J. B. Dominic, N. Cui, A. S. Boguslaw, H. O. Thomas, "Polishing Pad and System with Window Support ", US8393933 B2, 2013.
    [23] O. Shinro, S. Kazuo, "Polishing Apparatus and Polishing Pad ", US7081044 B2, 2006.
    [24] B. Manoocher, J. Nils, G. Allan, "Method for In-situ Endpoint Detection for Chemical Mechanical Polishing Operations ", US6537133 B1, 2003.
    [25] K. Norio, H. M. Wang, K. Masayuki, "Chemical Mechanical Polishing Endpoint Detection System and Method ", US6913514 B2, 2005.
    [26] D. Sivakumar, Q. Jun, D. C. Christopher, G. F. Jason, S. S. Chang, C. G. Charles, E. M. Gregory, S. D. Tsai, "Closed-loop Control for Improved Polishing Pad Profiles", US20110256812 A1, 2011.
    [27] J. L. Wu, B. I. Lee, S. K. Huang, C. M. Yang, C. H. Lin, " CMP Groove Depth and Conditioning Disk Monitoring ", US20130217306 A1, 2013.
    [28] 林震岩,,"多變量分析: SPSS的操作與應用",智勝出版社。2007。
    [29] C.-J. Wen, "Analysis on Effective Lifetime Index of Polishing Pad
    for CMP Process of Monocrystalline Silicon Wafers and Sapphire,"
    2014.
    [30] Y. Li, Microelectronic applications of chemical mechanical planarization:
    John Wiley & Sons, 2007.
    [31] M. Stewart, "A New Approach to the Use of Bearing Area Curve",
    International Honing Technologies and Applocations, 1990.
    [32] L. B. X. Jiang, "Advanced Techniques for Assessment Surface
    Topography- Development of a Basis for 3D surface Texture standards",
    2003.
    [33] H. K. Sunghoon Lee, "Development of a CMP pad with controlled micro features for improved performance",IEEE, 2005.
    [34] C. C. A. Chen, "Handout of manufacturing analysis",2012.

    QR CODE