簡易檢索 / 詳目顯示

研究生: 林憲展
Hsien-Chan Lin
論文名稱: 基於計算智慧與多重感測技術之自主移動機器人控制與導航
Control and Navigation for Autonomous Mobile Robots Based on Computational Intelligence and Multi-Sensing Techniques
指導教授: 徐勝均
Sheng-Dong Xu
口試委員: 黃旭志
Hsu-Chih Huang
柯正浩
Cheng-Hao Ko
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 同時定位與地圖建構感測器數據融合路徑追蹤控制器路徑規劃阿基米德優化演算法
外文關鍵詞: Simultaneous Localization and Mapping (SLAM), Multi-sensor Fusion, Trajectory Tracking Controller, Path Planning, Archimedes Optimization Algorithm (AOA)
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究基於計算智慧與多重感測技術進行自主移動機器人的控制與導航,提出了一個整合性架構,包括:(1)路徑追蹤的控制器設計、(2)路徑規劃的演算法、(3)感測器數據融合和(4)同時定位與地圖建構(Simultaneous Localization and Mapping, SLAM)。本研究同時進行了以不同演算法優化的模擬。其方法和優點分別如下:第一、我們提出以第二類型模糊神經網絡控制器來進行路徑追蹤的控制。由阿基米德優化演算法(Archimedes Optimization Algorithm, AOA)優化的結果可以得到最低的誤差。第二、我們在路徑規劃的演算法中設計一個評估的方式。此評估方式不僅會計算路徑的最短距離,還會計算路徑與障礙物間的安全距離。由模擬結果顯示,提出的方法成功規劃平滑無稜角的路徑,並且由阿基米德優化演算法可以得到最好的評估結果。第三、在感測器數據融合的部分使用基於奇異值分解(Singular Value Decomposition, SVD)的自適應無跡的卡爾曼濾波器(Adaptive Unscented Kalman Filter, AUKF)將里程計和UWB的數據融合,並導入控制器和SLAM中輔助修正定位的計算。第四、在SLAM中使用常態分佈轉換(Normal Distributions Transform, NDT)將光學雷達(Light Detection and Ranging, LiDAR)的離散數據轉換成連續的函式。最後,以本研究所提出的整體架構來進行SLAM的模擬,可以精確地完成SLAM的任務。與其他演算法相比,在搜索最佳值的部分,阿基米德優化演算法可以得到最好的評分結果。


    This study proposes an integrated architecture for the control and navigation of autonomous mobile robots based on computational intelligence and multiple sensing techniques. This integrated architecture includes (1) path tracking controller design, (2) path planning algorithms, (3) sensors’ data fusion, and (4) Simultaneous Localization and Mapping (SLAM). Simulations and implementations optimized with different algorithms were carried out in this study. The methods and advantages are as follows. First, we propose a second type of fuzzy neural network controller for path tracing control. The result optimized by the Archimedes Optimization Algorithm (AOA) will achieve the lowest error. Second, we design an evaluation method in the path planning algorithm. Such an evaluation method not only can calculate the shortest distance of the path, but also can calculate the safety distance between the path and obstacles. The simulation results show that the proposed method successfully plans a smooth path without corners, and the best evaluation result can be obtained by the AOA. Third, in the part of sensors’ data fusion, the odometer and UWB data are fused using an Adaptive Unscented Kalman Filter (AUKF) based on Singular Value Decomposition (SVD), and we import the calculation of auxiliary correction positioning in the controller and SLAM. Fourth, we use Normal Distributions Transform (NDT) in SLAM to convert the discrete data of Light Detection and Ranging (LiDAR) into a continuous function. Finally, the SLAM simulation can be carried out with the overall framework proposed in this study, and the SLAM task can be accurately completed. Compared with other algorithms, the AOA can achieve the best scoring results in the part of searching for the best value.

    目錄 致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 方法與貢獻 2 1.4 論文架構 5 第二章 啟發式演算法 7 2.1 啟發式演算法介紹 7 2.2 群粒子演算法 7 2.3 基因遺傳演算法 9 2.4 阿基米德優化演算法 11 第三章 路徑追蹤控制器設計 15 3.1 系統架構 15 3.2 機器人模型 15 3.3 第二類型模糊神經網絡控制器 18 3.3.1 第二類型模糊神經網絡控制器設計 18 3.3.2 第二類型模糊神經網絡 19 第四章 路徑規劃評估 23 4.1 貝茲曲線 23 4.2 最佳路徑規劃評估 24 4.2.1 路徑與障礙物的評估 25 4.2.2 路徑長度的評估 25 4.2.3 最佳路徑演算 26 第五章 UWB和里程計感測器數據融合 27 5.1 UWB室內定位系統 27 5.1.1 UWB通訊及室內定位系統介紹 27 5.1.2 飛行時間測距法 28 5.1.3 三邊測距法和最小平方法 29 5.2 里程計 30 5.3 使用無跡的卡爾曼濾波器融合UWB和里程計數據 31 5.3.1 標準的無跡卡爾曼濾波器 31 5.3.2 用於無跡卡爾曼濾波器的奇異值分解 34 5.3.3 自適應的無跡卡爾曼濾波器 35 第六章 同時定位與地圖建構 36 6.1 常態分佈轉換 36 6.2 常態分佈轉換-阿基米德優化演算法(NDT-AOA) 37 第七章 測試結果與討論 40 7.1 模擬設置 40 7.2 控制器模擬結果 43 7.2.1 控制器軌跡模擬結果 43 7.2.2 控制器優化適應值收斂比較分析 45 7.3 路徑規劃模擬結果分析 48 7.4 多感測器數據融合模擬 51 7.4.1 多感測器數據融合模擬結果分析 51 7.5 SLAM模擬分析 54 7.5.1 SLAM模擬環境 54 7.5.2 SLAM模擬結果分析 56 7.6 模擬實驗結果分析與討論 59 第八章 結論與未來展望 60 8.1 結論 60 8.2 未來展望 61 參考文獻 62

    [1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006, DOI: 10.1109/MRA.2006.1638022.
    [2] J. Qian, K. Chen, Q. Chen, Y. Yang, J. Zhan, and S. Chen, “Robust visual-LiDAR simultaneous localization and mapping system for UAV,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, July 2022, DOI: 10.1109/LGRS.2021.3099166.
    [3] K. Jaskólski, Ł. Marchel, A. Felski, M. Jaskólski, and M. Specht, “Automatic identification system (AIS) dynamic data integrity monitoring and trajectory tracking based on the simultaneous localization and mapping (SLAM) process model,” Sensors, vol. 21, pp. 8430-8448, December 2021, DOI: 10.3390/s21248430.
    [4] F. Bounini, D. Gingras, H. Pollart, and D. Gruyer, “From simultaneous localization and mapping to collaborative localization for intelligent vehicles,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 4, pp. 196-216, March 2021, DOI: 10.1109/MITS.2019.2926368.
    [5] S. Saeedi, B. Bodin, H. Wagstaff, A. Nisbet, L. Nardi, J. Mawer, N. Melot, O. Palomar, E. Vespa, T. Spink, C. Gorgovan, A. Webb, J. Clarkson, E. Tomusk, T. Debrunner, K. Kaszyk, P. Gonzalez-De-Aledo, A. Rodchenko, G. Riley, C. Kotselidis, B. Franke, M. F. P. O’Boyle, A. J. Davison, P. H. J. Kelly, M. Luján, and S. Furber, “Navigating the landscape for real-time localization and mapping for robotics and virtual and augmented reality,” Proceedings of the IEEE, vol. 106, no. 11, pp. 2020-2039, November 2018, DOI: 10.1109/JPROC.2018.2856739.
    [6] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” in Proc. IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, March 31-April 3, 1987, pp. 850-850, DOI: 10.1109/ROBOT.1987. 1087846.
    [7] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34-46, February 2007, DOI: 10.1109/TRO.2006.889486.
    [8] G. P. C. Júnior, A. M. C. Rezende, V. R. F. Miranda, R. Fernandes, H. Azpúrua, A. A. Neto, G. Pessin, and G. M. Freitas, “EKF-LOAM: An adaptive fusion of LiDAR SLAM with wheel odometry and inertial data for confined spaces with few geometric features,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1458-1471, July 2022, DOI: 10.1109/TASE.2022.3169442.
    [9] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LiDAR SLAM,” in Proc. IEEE International Conference on Robotics and Automation, Stockholm, Sweden, May 16-21, 2016, pp. 1271-1278, DOI: 10.1109/ICRA.2016. 7487258.
    [10] P. Biber and W. Strasser, “The normal distributions transform: A new approach to laser scan matching,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, October 27-31, 2003, pp. 2743-2748, DOI: 10.1109/IROS. 2003.1249285.
    [11] S. Bouraine, A. Bougoufa, and O. Azouaoui, “Particle swarm optimization for solving a scan-matching problem based on the normal distributions transform,” Evolutionary Intelligence, vol. 15, no. 1, pp. 683-694, March 2022, DOI: 10.1007/s12065-020-00545-y.
    [12] K. Zhong, Y. Liu, J. Yang, M. LU, and J. Zhang, “A factor graph optimization mapping based on normal distributions transform,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 30, no. 3, pp. 1127-1141, March 2022, DOI: 10.55730/1300-0632.3831.
    [13] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany, “Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems,” Applied Intelligence, vol. 51, no. 3, pp. 1531-1551, March 2021, DOI: 10.1007/s10489-020-01893-z.
    [14] F. Farhangian, M. Sefidgar, and R. J. Landry, “Applying a ToF/IMU-based multi-sensor fusion architecture in pedestrian indoor navigation methods,” Sensors, vol. 21, no. 11, pp. 3615-3635, May 2021, DOI: 10.3390/s21113615.
    [15] W. You, F. Li, L. Liao, and M. Huang, “Data fusion of UWB and IMU based on unscented Kalman filter for indoor localization of quadrotor UAV,” IEEE Access, vol. 8, pp. 64971-64981, April 2020, DOI: 10.1109/ACCESS.2020.2985053.
    [16] S. Konatowski, P. Kaniewski, and J. Matuszewski, ‘‘Comparison of estimation accuracy of EKF, UKF and PF filters,’’ Annual of Navigation, vol. 23, no. 1, pp. 69-87, December 2016, DOI: 10.1515/aon-2016-0005.
    [17] Y. Ma, Z. Wang, X. Zhao, J. Han, and Y. He, “A UKF algorithm based on the singular value decomposition of state covariance,” in Proc. World Congress on Intelligent Control and Automation, Jinan, China, July 7-9, 2010, pp. 5830-5835, DOI: 10.1109/WCICA.2010.5554585.
    [18] J. Meng, A. Liu, Y. Yang, Z. Wu, and Q. Xu, “Two-wheeled robot platform based on PID control,” in Proc. International Conference on Information Science and Control Engineering, Zhengzhou, China, July 20-22, 2018, pp. 1011-1014, DOI: 10.1109/ ICISCE.2018.00208.
    [19] B. B. Mevo, M. R. Saad, and R. Fareh, “Adaptive sliding mode control of wheeled mobile robot with nonlinear model and uncertainties,” in Proc. IEEE Canadian Conference on Electrical & Computer Engineering, Quebec, QC, Canada, May 13-16, 2018, pp. 1-5, DOI: 10.1109/CCECE.2018.8447570.
    [20] D. Diaz and R. Kelly, “On modeling and position tracking control of the generalized differential driven wheeled mobile robot,” in Proc. IEEE International Conference on Automatica, Curico, Chile, October 19-21, 2016, pp. 1-6, DOI: 10.1109/ICA-ACCA.2016.7778500.
    [21] P. Petrov and V. Georgieva, “Adaptive velocity control for a differential drive mobile robot,” in Proc. International Symposium on Electrical Apparatus and Technologies, Bourgas, Bulgaria, June 3-6, 2018, pp. 1-4, DOI: 10.1109/SIELA.2018.8447091.
    [22] S. Peng and W. Shi, “Adaptive fuzzy output feedback control of a nonholonomic wheeled mobile robot,” IEEE Access, vol. 6, pp. 43414-43424, August 2018, DOI: 10.1109/ACCESS.2018.2862163.
    [23] M. Yue, L. Wang, and T. Ma, ‘‘Neural network based terminal sliding mode control for WMRs affected by an augmented ground friction with slippage effect,’’ IEEE/CAA J. Automatica Sinica, vol. 4, no. 3, pp. 498-506, July 2017, DOI: 10.1109/JAS.2017. 7510553.
    [24] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Edsger Wybe Dijkstra: His Life, Work, and Legacy, vol. 1, pp. 269-271, December 1959, DOI: 10.1007/BF01386390.
    [25] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968, DOI: 10.1109/TSSC.1968.300136.
    [26] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The International Journal of Robotics Research, vol. 20, no. 5, pp. 378-400, May 2001, DOI: 10.1109/ROBOT.1999.770022.
    [27] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. International Conference on Neural Networks, Perth, Australia, November 27-December 1, 1995, pp. 1942-1948, DOI: 10.1109/ICNN.1995.488968.
    [28] J. H. Holland, “Genetic algorithms and the optimal allocation of trials,” Society for Industrial and Applied Mathematics (SIAM) Journal on Computing, vol. 2, no. 2, pp. 88–105, 1973, DOI: 10.1137/0202009.
    [29] D. Rao, G. Hu, and Z. Jiang, “PRobPlan: A framework of integrating probabilistic planning into ROS,” IEEE Access, vol. 8, pp. 106516-106530, June 2020, DOI: 10.1109/ACCESS.2020.3000293.
    [30] Y. Niu, H. Qazi, and Y. Liang, “Building a flexible mobile robotics teaching toolkit by extending MATLAB/Simulink with ROS and gazebo,” in Proc. International Conference on Mechatronics and Robotics Engineering, Budapest, Hungary, February 3-5, 2021, pp. 10-16, DOI: 10.1109/ICMRE51691.2021.9384836.
    [31] S. Rivera, A. K. Iannillo, S. Lagraa, C. Joly, and R. State, “ROS-FM: Fast monitoring for the robotic operating system (ROS),” in Proc. International Conference on Engineering of Complex Computer Systems, Singapore, October 28-31, 2020, pp. 187-196, DOI: 10.1109/ICECCS51672.2020.00029.
    [32] P. Anggraeni, M. Mrabet, M. Defoort, and M. Djemai, “Development of a wireless communication platform for multiple-mobile robots using ROS,” in Proc. International Conference on Control Engineering & Information Technology, Istanbul, Turkey, October 25-27, 2018, pp. 1-6, DOI: 10.1109/CEIT.2018.8751845.
    [33] M. A. Tawfik, E. N. Abdulwahb, and S. M. Swadi, “Trajectory tracking control for a wheeled mobile robot using fractional order PID controller,” Al-Khwarizmi Engineering Journal, vol. 10, no. 3, pp. 39-52, June 2014, DOI: 10.29196/jubes. v26i4.1087.
    [34] S. A. Ahmed and M. GPetrov, “Trajectory control of mobile robots using type-2 fuzzy-neural PID controller,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 138-143, September 2015, DOI: 10.1016/j.ifacol.2015.12.071.
    [35] M. H. Chang and Y. C. Wu, “Speed control of electric vehicle by using type-2 fuzzy neural network,” International Journal of Machine Learning and Cybernetics, vol. 13, pp. 1647-1660, November 2021, DOI: 10.1007/s13042-021-01475-6.
    [36] C. M. Lin, T. L. Le, and T. T. Huynh, “Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control,” Neurocomputing, vol. 275, pp. 2239-2250, January 2018, DOI: 10.1016/j.neucom.2017.11.009.
    [37] A. Ashfahani, M. Pratama, E. Lughofer, Q. Cai, and H. Sheng, “An online RFID localization in the manufacturing shopfloor,” Predictive Maintenance in Dynamic Systems, pp. 287-309, March 2019, DOI: 10.1007/978-3-030-05645-2_10.
    [38] X. Lu, Y. Zhao, and M. Liu, “Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a delta parallel robot,” Neurocomputing, vol. 283, pp. 107-119, March 2018, DOI: 10.1016/j.neucom.2017.12.043.
    [39] W. Chen, C. Sun, H. Liu, J. Liu, and Y. Tang, “Path planning scheme for spray painting robot with Bézier curves on complex curved surfaces,” in Proc. Youth Academic Annual Conference of Chinese Association of Automation, Hefei, China, May 19-21, 2017, pp. 698-703, DOI: 10.1109/YAC.2017.7967499.
    [40] D. Hailong, “Contour extraction method and implementation of active contour model algorithm based on n-order Bezier curve for cardiac medical images,” in Proc. International Symposium on Distributed Computing and Applications for Business Engineering and Science, Chizhou, China, October 14-18, 2022, pp. 79-81, DOI: 10.1109/DCABES57229.2022.00026.
    [41] Q. Li, J.-P. Li, and L. Chen, “A Bezier curve-based font generation algorithm for character fonts,” in Proc. IEEE International Conference on High Performance Computing and Communications; IEEE International Conference on Smart City; IEEE International Conference on Data Science and Systems, Exeter, UK, June 28-30, 2018, pp. 1156-1159, DOI: 10.1109/HPCC/SmartCity/DSS.2018.00194.
    [42] C. Yuan, J. Liu, and Y. Wang, “Research on indoor positioning and navigation method of AGV based on multi-sensor fusion,” Highlights in Science, Engineering and Technology, vol. 7, pp. 206-213, March 2022, DOI: 10.54097/hset.v7i.1060.
    [43] M. Malajner, P. Planinšič, and D. Gleich, “UWB ranging accuracy,” in Proc. International Conference on Systems, Signals and Image Processing, London, UK, September 10-12, 2015, pp. 61-64, DOI: 10.1109/IWSSIP.2015.7314177.
    [44] Q. Zeng, D. Liu, and C. Lv, “UWB/binocular VO fusion algorithm based on adaptive kalman filter,” Sensors, vol. 19, no.18, pp. 4044-4063, September 2019, DOI: 10.3390/s19184044.
    [45] S. A. Mohamed, M. H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, and J. Plosila, “A survey on odometry for autonomous navigation systems,” IEEE Access, vol. 7, pp. 97466-97486, July 2019, DOI: 10.1109/ACCESS.2019.2929133.

    無法下載圖示 全文公開日期 2025/08/14 (校內網路)
    全文公開日期 2025/08/14 (校外網路)
    全文公開日期 2025/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE