簡易檢索 / 詳目顯示

研究生: 顏煜鴻
Yu-Hung Yen
論文名稱: 以模型預測控制為基礎發展具液壓離合器之混合動力車輛模式切換控制
Mode Switching Control of Hybrid Electric Vehicles with Hydraulic Clutches based on Model Predictive Control
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 劉霆
Tyng Liu
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 120
中文關鍵詞: 液壓離合器混合動力車輛模式切換模型預測控制油泵控制平順性節能
外文關鍵詞: hydraulic clutch, hybrid electric vehicle, mode switching, model predictive control, oil pump control, smoothness, energy-efficient
相關次數: 點閱:392下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 英文摘要 致謝 目錄 圖目錄 表目錄 導論 液壓離合器物理模型 控制器設計 模擬結果 結論與未來展望 參考文獻 附錄

    [1] 劉啟恩. 複合動力系統液壓驅動離合器之模型預測控制, 2019.
    [2] E. Camacho and C. Bordons. Model Predictive Control. Springer, 2003.
    [3] 林祥輝. 日本政府公布「氫能基本戰略」. https://km.twenergy.org.tw/Data/db-more?
    id=2468, 2017.
    [4] Maria Merano. Toyota explores manual transmission for modern evs in new patents.
    https://www.teslarati.com/toyota-electric-vehicle-manual-transmission-patent/, 2022.
    [5] Kamil Çağatay Bayindir, Mehmet Ali Gözüküçük, and Ahmet Teke. A comprehensive
    overview of hybrid electric vehicle: Powertrain configurations, powertrain control
    techniques and electronic control units. Energy conversion and Management, 52(2):
    1305–1313, 2011.
    [6] Abhishek Dutta, Clara M Ionescu, Bart Wyns, Robin De Keyser, Julian Stoev, Gregory
    Pinte, and Wim Symens. Switched nonlinear predictive control with adaptive references
    for engagement of wet clutches. IFAC Proceedings Volumes, 45(17):460–465, 2012.
    [7] Walter Lhomme, Rochdi Trigui, Philippe Delarue, Bruno Jeanneret, Alain Bouscayrol,
    and Francois Badin. Switched causal modeling of transmission with clutch in hybrid
    electric vehicles. IEEE Transactions on Vehicular Technology, 57(4):2081–2088, 2008.
    [8] ES Bettis and ER Mann. A servo employing the magnetic fluid clutch. Review of
    Scientific Instruments, 20(2):97–101, 1949.
    [9] AE Balau and Corneliu Lazar. State-space model of an electro-hydraulic actuated wetclutch. IFAC Proceedings Volumes, 43(7):506–511, 2010.
    [10] Shengdun Zhao, Ji Wang, Jun Wang, and Yupeng He. Expansion-chamber muffler for
    impulse noise of pneumatic frictional clutch and brake in mechanical presses. Applied
    acoustics, 67(6):580–594, 2006.
    [11] Takeo Nakagawa, Kazubiko Nakamura, and Hiroyuki Amino. Various applications of
    hydraulic counter-pressure deep drawing. Journal of Materials Processing Technology,
    71(1):160–167, 1997.
    [12] Petr Noskievič. Control of linear hydraulic actuator using the full hydraulic bridge.In 2018 19th International Conference on Research and Education in Mechatronics
    (REM), pages 52–57. IEEE, 2018.
    [13] Junbeom Wi, Hyunhwa Kim, Jiho Yoo, Hanho Son, Hyunsoo Kim, and Byungjae Kim.
    Energy consumption of parallel type hybrid electric vehicle with continuously variable
    transmission using electric oil pump. In 2018 thirteenth international conference on
    ecological vehicles and renewable energies (EVER), pages 1–7. IEEE, 2018.
    [14] Yunfeng Liu, Yunshan Zhou, Jiande Wang, Daohai Qu, and Feitie Zhang. Hydraulic
    system control for a hybrid continuously variable transmission based on an electric oil pump. IEEE Transactions on Vehicular Technology, 67(11):10398–10410, 2018.
    [15] Shoaib Iqbal, Farid Al-Bender, Agusmian P Ompusunggu, Bert Pluymers, and Wim
    Desmet. Modeling and analysis of wet friction clutch engagement dynamics. Mechanical
    Systems and Signal Processing, 60:420–436, 2015.
    [16] Josko Deur, Josko Petric, Jahan Asgari, and Davor Hrovat. Modeling of wet clutch
    engagement including a thorough experimental validation. SAE transactions, pages
    1013–1028, 2005.
    [17] Agusmian Partogi Ompusunggu, Paul Sas, and Hendrik Van Brussel. Modeling and
    simulation of the engagement dynamics of a wet friction clutch system subjected to
    degradation: An application to condition monitoring and prognostics. Mechatronics,
    23(6):700–712, 2013.
    [18] H Gao, GC Barber, and M Shillor. Numerical simulation of engagement of a wet clutch with skewed surface roughness. J. Trib., 124(2):305–312, 2002.
    [19] Tien-Chen Jen and Daniel James Nemecek. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement. International journal of heat and mass transfer, 51(7-8):1757–1769, 2008.
    [20] Li Wenbin, Huang Jianfeng, Fei Jie, Cao Liyun, and Yao Chunyan. Simulation and
    application of temperature field of carbon fabric wet clutch during engagement based
    on finite element analysis. International Communications in Heat and Mass Transfer,
    71:180–187, 2016.
    [21] Mongi Mansouri, Mattias Holgerson, Michael-M Khonsari, and W Aung. Thermal and
    dynamic characterization of wet clutch engagement with provision for drive torque. J.
    Trib., 123(2):313–323, 2001.
    [22] M Ingram, T Reddyhoff, and HA Spikes. Thermal behaviour of a slipping wet clutch
    contact. Tribology Letters, 41(1):23–32, 2011.
    [23] Xiang Xiong, Jie Chen, Pingping Yao, Shipeng Li, and Baiyun Huang. Friction and
    wear behaviors and mechanisms of fe and sio2 in cu-based p/m friction materials. Wear,
    262(9-10):1182–1186, 2007.
    [24] Pär Nyman, Rikard Mäki, Richard Olsson, and Bager Ganemi. Influence of surface
    topography on friction characteristics in wet clutch applications. Wear, 261(1):46–52,
    2006.
    [25] Ping-Ping Yao, Hong-Chao Sheng, Xiang Xiong, and Bai-Yun Huang. Worn surface
    characteristics of cu-based powder metallurgy bake materials for aircraft. Transactions of Nonferrous Metals Society of China, 17(1):99–103, 2007.
    [26] Vladimir Ivanović, Zvonko Herold, Joško Deur, Matthew Hancock, and Francis Assadian. Experimental characterization of wet clutch friction behaviors including thermal dynamics. SAE International Journal of Engines, 2(1):1211–1220, 2009.
    [27] Aishwarya Panday and Hari Om Bansal. Fuel efficiency optimization of input-split
    hybrid electric vehicle using direct algorithm. In 2014 9th International Conference on Industrial and Information Systems (ICIIS), pages 1–6. IEEE, 2014.
    [28] Zhigang Zhang, Ling Zou, Hang Liu, Jin Feng, and Zhige Chen. Response characteristics of dynamic torque for wet clutch engagement: A numerical and experimental study. Shock and Vibration, 2021, 2021.
    [29] Bingzhao Gao, Yu Xiang, Hong Chen, Qiong Liang, and Lulu Guo. Optimal trajectory
    planning of motor torque and clutch slip speed for gear shift of a two-speed electric
    vehicle. Journal of Dynamic Systems, Measurement, and Control, 137(6):061016, 2015.
    [30] Clemens C Maier, Simon Schröders, Wolfgang Ebner, Marius Köster, Alexander Fidlin, and Christoph Hametner. Modeling and nonlinear parameter identification for hydraulic servo-systems with switching properties. Mechatronics, 61:83–95, 2019.
    [31] Kiattisin Kanjanawanishkul. Lqr and mpc controller design and comparison for a stationaryself-balancing bicycle robot with a reaction wheel. Kybernetika, 51(1):173–191, 2015.
    [32] Andrzej Jezierski, Jakub Mozaryn, and Damian Suski. A comparison of lqr and mpc
    control algorithms of an inverted pendulum. In Polish Control Conference, pages 65–
    76. Springer, 2017.
    [33] Bingzhao Z Gao, Hong Chen, Kazushi Sanada, and Yunfeng Hu. Design of clutch-slip
    controller for automatic transmission using backstepping. IEEE/ASME Transactions on
    mechatronics, 16(3):498–508, 2010.
    [34] Jacques Richalet, André Rault, JL Testud, and J Papon. Model predictive heuristic
    control: Applications to industrial processes. Automatica, 14(5):413–428, 1978.
    [35] Eduardo F Camacho, Carlos Bordons, and Julio E Normey-Rico. Model predictive control springer, berlin, 1999, isbn 3540762418, 280 pages, 2003.
    [36] Ramine Rouhani and Raman K Mehra. Model algorithmic control (mac); basic theoretical properties. Automatica, 18(4):401–414, 1982.
    [37] Charles R Cutler and Brian L Ramaker. Dynamic matrix control a computer control
    algorithm. In joint automatic control conference, number 17, page 72, 1980.
    [38] David W Clarke, Coorous Mohtadi, and P Simon Tuffs. Generalized predictive control—part i. the basic algorithm. Automatica, 23(2):137–148, 1987.
    [39] David W Clarke, Coorous Mohtadi, and P Simon Tuffs. Generalized predictive control—part ii extensions and interpretations. Automatica, 23(2):149–160, 1987.
    [40] Wook Hyun Kwon and Dae Gyu Byun. Receding horizon tracking control as a predictive control and its stability properties. International Journal of Control, 50(5):1807–1824, 1989.
    [41] Anthony Esposito. Fluid power with applications. Prentice Hall Upper Saddle River, New Jersey, 2000.
    [42] Per Nobrant. Driveline modelling using mathmodelica. Universität von Linköping,
    Institute of Techology, Linköping (Schweden), 2001.
    [43] Liuping Wang. Model Predictive Control System Design and Implementation Using
    MATLAB. Springer Publishing Company, Incorporated, 2009.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2025/08/26 (校外網路)
    全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE