簡易檢索 / 詳目顯示

研究生: 洪雅華
Anindya Agripina Hadyanawati
論文名稱: 立體顯示螢幕下動態物體之眼球追蹤準確度
Eye Gaze Accuracy of Dynamic Object Pursuit on the Stereoscopic Display
指導教授: 林久翔
Chiuhsiang Joe Lin
口試委員: 陳宏仁
Hung-Jen Chen
Bereket Haile Woldegiorgis
林久翔
Chiuhsiang Joe Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 79
中文關鍵詞: 立體顯示運動物體平滑追踪精度
外文關鍵詞: Stereoscopic Display, Moving object, Smooth pursuit, Accuracy
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是研究立體顯示中人眼注視運動物體的準確性。在體驗設計方面,10名參與者(五男五女)分別實驗36種情況,以四種實驗環境(2D、0視差的3D、30視差的3D、60視差的3D)、三種速度( 5°/s、15°/s、25°/s),三種運動方向(圓形、水平、垂直)。本研究使用 3D 電視和 3D 眼鏡檢查立體顯示。本研究中的虛擬物件開發於 Unity 4.3.4。使用 Tobii pro lab以 60Hz 採樣率記錄數據,並使用帶有Velocity-Threshold Identification (I-VT) 的固定濾波器。將數據計算為距離精度,然後轉換為視角。從實驗數據可以看出,只有運動方向與視角有顯著差異。左眼的顯著性是 F (1.082;9.742) = 39.007; p < ,000,右眼為 F (1.185;10.664) = 26.362; p <,000。從三運動方向看,垂直運動的精度最高,而不是水平和圓周運動。该研究有助于为未来与立体显示中人眼性能相关的研究提供指导


    This study investigates the accuracy of the human eye-gaze of the moving objects in the stereoscopic display. In the design of experience, 10 participants (five male and five female) performed 36 experiment conditions in four levels of the experimental environment (2D, 3D with 0 parallax, 3D with 30 parallax, 3D with 60 parallax), three-level of velocity (5°/s, 15°/s, 25°/s), and three levels of motion direction (circular, horizontal, vertical). The study examined stereoscopic displays using 3D TV and 3D glasses. The virtual object in this study was developed in Unity 4.3.4. The data was recorded with Tobii pro lab with a 60Hz sampling rate and use the fixation filter with Velocity-Threshold Identification (I-VT). The data calculated into distance accuracy then convert into a visual angle. The experiment data shows that only motion direction has a significant difference with the visual angle. The significance for the left eye is F (1.082;9.742) = 39.007; p < ,000 and for the right eye is F (1.185;10.664) = 26.362; p <,000. The vertical motion has the highest accuracy from the three-motion direction rather than the horizontal and circular motion. This research contributes to provide the guideline of future research related to human eyes performance in the stereoscopic display

    ACKNOWLEDGEMENT ii ABSTRACT iii 摘要 iv TABLE OF CONTENT v LIST OF TABLES vii LIST OF FIGURES viii CHAPTER I INTRODUCTION 1 1.1. Research Background 1 1.2. Research Objective 2 1.3. Research Scope and Limitations 2 1.4. Research Framework 3 CHAPTER II LITERATURE REVIEW 6 2.1. Eye Mechanism 6 2.2. Eye movement 7 2.2.1. Smooth Pursuit 9 2.3. Stereoscopic Display 10 2.4. Eye-tracking 12 2.5. Previous Study 13 CHAPTER III EXPERIMENTAL DESIGN 17 3.1. Experimental Design 17 3.2.1. Participants 17 3.2.2. Experimental Variables 18 3.2.3. Hypothesis and Prediction 26 3.2. Experimental Setup 26 3.3. Procedure 32 CHAPTER IV RESULT 34 4.1 Collecting Data 34 4.2 Visual Angle 35 4.3 Differences Left and Right Eye 40 CHAPTER V DISCUSSION 41 CHAPTER VI CONCLUSION 44 4.1. Conclusion 44 4.2. Future Research 44 REFERENCES 46 APPENDIXES 50

    Blignaut, P., Holmqvist, K., Nuström, M., & Dewhurst, R. (2014). Improving the accuracy of video-based eye-tracking in real-time through post-calibration regression. Current Trends in Eye Tracking Research (pp. 77-100). Springer.
    Buizza, A., & Schmid, R. (1986). Velocity characteristics of smooth pursuit eye movements to different patterns of target motion. Experimental Brain Research, 395-401.
    Cipresso, P., Giglioli, I. A., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in psychology, 9.
    Clay, V., König, P., & Koenig, S. U. (2019). Eye Tracking in Virtual Reality. Journal of Eye Movement Research, 12.
    Cohen, R. A. (2011). Optokinetic Reflex. In Encyclopedia of Clinical Neuropsychology. New York: Springer.
    Cruz-Neira, C. (1993). Virtual reality overview. SIGGRAPH 93 Course Notes 21st International Conference on Computer Graphics and Interactive Techniques. Orlando.
    de Xirvy, O., & Lefevre, P. (2007). Saccades and pursuit: two outcomes of a single sensorimotor process. The Journal of Physiology, 11-23.
    DisplayDB. (2014). Sony KDL-55W800B Specifications. Retrieved from https://www.displaydb.com/tv/sony-kdl-55w800b
    Enderle, J. (2010). Models of horizontal eye movements, Part I: Early models of saccades and smooth pursuit. Synthesis Lectures on Quantum Computing, 1-163.
    Field, A. (2013). Discovering Statistics using SPSS (Third ed.). London: Sage.
    Gigante, M. A. (1993). Virtual reality: definition, history, and applications. Virtual Reality Systems, 3-14.
    Hardwidge, B. (2011). Nvidia Talks 3D Vision. Retrieved from Bit Tech: https://bit-tech.net/reviews/tech/graphics/nvidia-talks-03d-vision/2/
    Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence-accomodation conflicts hinder visual performance and cause visual fatigue. Journal of vision, 1-30.
    Huang, Y.-P., & Chen, C.-H. (2018). 3D Displays, Stereoscopic/Autostereoscopic 3D. Encyclopedia of Modern Optics (Second Edition), 44-50.
    Kenneth, W. W. (2003). Anatomy and physiology of eye movement. In W. W. Kenneth, H. S. Peter, & L. Thompson, Handbook of pediatric strabismus and amblyopia (pp. 24-69). USA: Springer.
    Khamis, M., Oechsner, C., Alt, F., & Bulling, A. (2018). VRPursuits: Interaction in virtual reality using smooth pursuit eye movements. Proceedings of the 2018 International Conference on Advanced Visual Interfaces, (pp. 1-8).
    Kim, G. J. (2005). Designing Virtual Reality System. New York: Springer.
    Kim, J., Seo, J., & Laine, T. (2018). Detecting boredom from eye gaze and EEG. Biomedical signal processing and control, 302-313.
    Leigh, R. J., & Zee, D. S. (2015). The neurology of eye movements. Ney York, USA: Oxford University Press.
    Lin, C. J., & Woldegiorgis, B. H. (2015). Interaction and visual performance in stereoscopic displays: A review. Journal of the Society for Information Display, 23(7), 319-332.
    Lin, C. J., Caesaron, D., & Woldegiorgis, B. H. (2019). The Effects of Augmented Reality Interaction Techniques on Egocentric Distance Estimation Accuracy. Applied Sciences, 9(21), 4652.
    Lin, C. J., Prasetyo, Y. T., & Widyaningrum, R. (2019). Eye movement measures for predicting eye gaze accuracy and symptoms in 2D and 3D displays. Displays 60, 1-8.
    Lin, C. J., Woldegiorgis, B. H., Caesaron, D., & Cheng, L. Y. (2015). Distance estimation with mixed real and virtual target in stereoscopic display. Display 36, 41-48.
    Lin, C., & Widyaningrum, R. (2018). The effect of parallax on eye fixation parameter in projection-based stereoscopic displays. Applied Ergonomics 69, 10-16.
    Mcilreavy , L., Freeman, T. C., & Erichsen, J. T. (2019). Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy. Trans Vision Science and technology, 8(5).
    Mcmanus, I. (1999). Eye-dominance, writing hand, and throwing hand. Laterality: Asymmetries of Body, Brain and Cognition, 4(2), 173-192.
    Morimoto, C. H., & Mimica, M. R. (2005). Eye gaze tracking techniques for interactive applications. Computer vision and image understanding, 4-24.
    Nielsen, J., & Pernice, K. (2010). Eyetracking web usability. New Riders.
    Pantanowitz, A., Kim, K., Chewins, C., Tollman, I. N., & Rubin, D. (2020). Addressing the eye fixation problem in gaze tracking for human computer interface using the vestibulo-ocular reflex. Informatics in Medicine Unlocked.
    Pastel, S., Chen, C.-H., Luca, M., Naujoks, M., Petri, K., & Witte, K. (2021). Comparison of gaze accuravy and precision in real-world and virtual reality. Virtual Reality, 175-189.
    Prasetyo, Y. T., Widyaningrum, R., & Lin, C. J. (2019). Eye Gaze Accuracy in the Projection-based Stereoscopic Display as a Function of Number of Fixation, Eye Movement Time, and Parallax. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 54-58). IEEE.
    Rehman, A., Kihara, K., Matsumoto, A., & Ohtsuka, S. (2015). Attentive tracking of moving objects in real 3D space. Vision Research, 1-10.
    Robinson, D., Gordon, J., & Gordon, S. (1986). A Model of the Smooth Pursuit Eye Movement System. Biological Cybernetics, 43-57.
    Ruten. (2020). ASUS MD800 commercial host i7-7700 8GB 1TB 3 years warranty. Retrieved from Ruten: https://www.ruten.com.tw/item/show?21617618326339
    Salvucci, D. D., & Goldberg, J. H. (2000). Identifying Fixations and Saccades in Eye-Tracking Protocols. Eye Tracking Research & Applications Symposium 2000, 71-78.
    Schalén, L. (1980). Quantification of tracking eye movements in normal subjects. Acta Otolaryngol, 90, 404-413.
    Schwerdtner, A. (2016). Autostereoscopic 2d display. Proceedings of SPIE, 6055, pp. 1-10. San Jose.
    Shanide, N., Ghahghaei, S., & Verghese, P. (2016). Accuracy of eye position for saccades and smooth pursuit. Journal of Vision, 1-12.
    Sharpe, J. (2014). Eye Movement; Smooth Pursuit. In Encyclopedia of the Neurological Sciences (Vol. 2, pp. 252-257). Canada: Elsevier.
    Shen, X., & Shirmohammadi, S. (2008). Encyclopedia of Multimedia. In Virtual and Augmented Reality (pp. 962-970). Boston: Springer.
    Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. C. (2012). Fundamental Neuroscience (Fourth Edition ed.). Academic Press.
    Squire, L., Berg, D., Bloom, F., Du Lac, S., Ghosh, A., & Spitzer, N. (2008). Fundamental Neuroscience (Third Edition ed.). London, United Kingdom: Academic Press.
    Swearer, J. (2011). Visual angle. In Encyclopedia of Clinical Neuropsychology. New York: Springer.
    Tobiipro. (2021). tobiipronano. Retrieved from tobiipro: https://www.tobiipro.com/product-listing/nano/
    Urvoy, M., Barkowsky, M., & Callet, P. L. (2013). How visual fatigue and discomfort impaft 3D-TV quality of experience: a comprehensive review of technological, psychological, and psychological factors. Annals of Telecommunacations - annales des tellecomunications, 68(11-12), 641-655.
    Van Hooser, S., & Nelson, S. (2001). Visual System. In Encyclopedia of Life Sciences.
    Vince, J. (2004). Introduction to Virtual Reality. Springer.
    Webuy. (2015). Sony TDG-BT400A 3D Active Glasses. Retrieved from Webuy: https://uk.webuy.com/product-detail/?id=saccvissontdgbt400a
    Woldegiorgis, B. H., Lin, C. J., & Liang, W.-Z. (2019). Impact of parallax and interpuppilary distance on size judgement performances of virtual objects in stereoscopic display. Ergonomics, 62(1), 76-87.

    無法下載圖示 全文公開日期 2031/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE