簡易檢索 / 詳目顯示

研究生: 林承鴻
Cheng-Hung Lin
論文名稱: 大學校園建築能源效率評估系統之建構-以台灣科技大學建築系為例
Building energy evaluation system for individual departments on university campus- A Case Study of NTUST Architecture Department
指導教授: 杜功仁
Kung-Jen Tu
口試委員: 文一智
I-Jyh Wen
施宣光
none
邱韻祥
none
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 51
中文關鍵詞: 大學單位空間類型標準使用模式標準耗能量能源效率指數
外文關鍵詞: university of department, space type, standard usage settings, standard energy consumption, energy efficiency index
相關次數: 點閱:180下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   我國行政院於2008年頒布「永續能源政策綱領」,並要求學校機關能源消耗能量每年減少1%。於此狀況下,大學各單位管理者勢必將於短時間內進行能源效率的評估及改善動作。然而面對各單位能源需求的差異下,其管理者將遭遇三個困境:(i)無法得知該單位之「實際耗能量」、(ii)缺乏適用的評估基準、(iii)無法提供管理者最具節能潛力的改善方向。本研究為協助單位管理者解決其所遭遇的困境,提出以下之研究目的:(1)發展出一套建築能源效率評估系統(Building Energy Evaluation System , BEES);(2)以台科大建築系為例,建立滿足各類空間最低耗能需求之使用模式;(3)以台科大建築系為例,進行BEES實例操作並提出相關改善建議。本研究將採用相關文獻探討、田野調查與實例操作等方法進行操作,以完成上述三項研究目的。
      首先,本研究所發展的BEES將透過能源模擬軟體的輔助,將求得該單位的「現況耗能量」,並以各類型空間於使用模式的差異為概念主軸,訂定各類空間之「標準使用模式」,以協助管理者求得該單位最經濟且合理的「標準耗能量」,並藉此做為該單位理想的耗能基準。接著再透過計算取得該單位之「浮動耗能量」和「能源效率指數」,並進行能源效率分析(能源效率指數分析、各類設備耗能比例分析、使用模式之敏感度分析),以提供單位管理者相關建議及改善方向,進而回應其大學單位管理者所遭遇三個困境。其次,本研究透過建築能源因子特性分類,將五類因子(氣候、建築、設備、負載及使用)依特性分類分為「建築環境因子」與「人為使用因子」,並確立其「標準使用模式」的訂定範圍為「人為使用因子」側之負載因子(人員密度、辦公機具與雜項機具密度)及使用因子(空間運作時間、空調溫度設定)。最後,本研究透過台灣科技大學建築系進行實例操作後,以估算出該單位的「現況耗能量」為179.97 kWh/ m2-yr、理想耗能基準為132.91 kWh/m2-yr(即標準耗能量),並同時具有35.4%的節能潛力。其中該單位又以建築系七樓為該單位最具節能潛力(54.8%)的樓層,首要的改善的重點為研究和工作空間的空調溫度設定,以及走廊及工作空間的運作時間。


      The Executive Yuan of the Republic of China has announced “Energy Continuity Guidelines” in 2008 which requests energy consumptions of all schools has to reduce at least 1% annually. Therefore, universities are bound to conduct the assessment and improvement of energy efficiency actions within short time of period. However, the managing team will face three difficulties under different demands for energy in different departments in the university: i) they would not know "actual energy consumption", ii) lack of appropriate evaluation criteria, iii) unable to provide the most energy-saving potential of improved management direction. The purpose of this case study is to assist department managers to resolve the difficulties they encountered and the research goals are: (1) to establish a Building Energy Evaluation System, BEES; (2) a case study of NTUST Architecture Department, established a minimum energy requirements can satisfying various types space patterns; (3) a case study of NTUST Architecture Department, BEES operation and propose recommendations for improvement. This study will adopt a literature review, field surveys and methods of operation to operate, in order to complete the three research purposes.
      First of all, the BEES developed under this case study will obtain the departments "reality energy consumption" through the computer simulation of energy and differences space mood as a concept in various types space patterns, set various types space "standard usage settings" to help managers obtain the most economical and reasonable "standard energy consumption", and to serve as an ideal energy base of the department. Then re-calculate the department resource to obtain "floating energy consumption" and "energy efficiency index" analysis of energy efficiency (energy efficiency index analysis, the proportion of various types of equipment, sensitivity analysis of using model) to provide department manager advice and to improve the direction, then response to University of department managers its three difficulties encountered, moreover, this study characteristics of building energy factor classification, five types of factors (climate, building, equipment, load and use) are divided into categories according to characteristics of "building environmental factors" and "human use factors" and to establish its "standard usage settings". The setting range is "human use factor" of the load factor (human density, office equipment and miscellaneous equipment density) and the use of factors (time, space operations, air conditioning temperature settings). Finally, this study through the Architecture Department of NTUST to practice, estimates the department "reality energy consumption" is 179.97 kWh/m2-yr, ideally dissipate benchmark is 132.91 kWh/m2-yr ( standard energy consumption), and also has 35.4% of the energy saving potential. Department of Architecture, where the seventh floor is the most energy-saving space (54.8%), the primary focus of the improvement is the research and work space for the air conditioning temperature setting, and the operation of the corridor and work space of time.

    中文摘要 I Abstract II 謝 誌 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究方法 3 1.4 研究流程 3 1.5 名詞解釋 3 第二章 既有能源效率評估基準文獻之回顧 5 2.1 既有能源效率評估基準 5 2.2 既有評估基準於大學單位管理之適用性 6 第三章 建築能源效率評估系統(BEES)介紹 8 3.1 BEES概念說明 8 3.1.1 依使用模式將單位空間分類 8 3.1.2 針對各類空間訂定標準使用模式 8 3.1.3 估算該單位之標準耗能量做為其耗能標竿值 9 3.1.4 計算該單位之能源效率指數 9 3.2  BEES架構設計 10 3.2.1 前置作業:現況調查與標準使用模式的訂定 10 3.2.2 操作介面:各項耗能量及與能源效率指數輸出 12 3.2.3 改善建議:標準、浮動耗能量分析與建議的改善方向 13 3.3  BEES操作流程說明 14 第四章 BEES實例操作:以台科大建築系為例 16 4.1 建築系現況調查 16 4.2 訂定各類空間標準使用模式 19 4.3 現況、標準與浮動耗能量之估算 20 4.4 建築系能源效率分析 22 4.4.1 能源效率指數分析 22 4.4.2 各類設備耗能比例分析 23 4.4.3 使用模式之敏感度分析 24 4.5 提出建築系改善建議 28 第五章 結論與建議 30 5.1 結論 30 5.2 建議 31 參考文獻 32 附錄A 台灣科技大學建築系之現況調查數據 35 附錄B 台灣科技大學建築系之各類空間標準使用模式 42

    1. Canbay, C.S., Hepbasli, A. and Gokcen, G. (2004). Evaluating performance indices of a shopping centre and implementing HVAC control principles to minimize energy usage. Energy and Buildings, 36, 587-598.
    2. Chung, W., Hui, T.V. and Lam, Y.M. (2006). Benchmarking the energy efficiency of commercial buildings. Applied Energy, 83, 1-14.
    3. Deng, S. (2003). Energy and water uses and their performance explanatory indicators in hotels in Hong Kong. Energy and Buildings, 35, 775–784.
    4. Energy Information Administration (2004). International Energy Outlook 2004, U.S. Department of Energy.
    5. Deng, S.M. and Burnett, J. (2000). A study of energy performance of hotel building in Hong Kong. Energy and Buildings, 39, 7–12.
    6. Federspiel, C., Zhang Q., and Arens, E. (2002). Model-based benchmarking with application to laboratory buildings. Energy and Buildings, 34, 203–214.
    7. Filippín, C. (2000). Benchmarking the energy efficiency and greenhouse gases emissions of school buildings in central Argentina. Building and Environment, 35(5), 407-414.
    8. Hatamipour, M.S., Mahiyar, H., and Taheri, M. (2007). Evaluation of existing cooling systems for reducing cooling power consumption. Energy and Buildings, 39, 105–112.
    9. Hernandez, P., Burke, K., Lewis, J.O. (2008). Development of energy performance benchmarks and building energy ratings for non-domestic buildings: An example for Irish primary schools. Energy & Buildings, 40, 249–254.
    10. Lee, W.L., Burnetti J. (2008). Benchmarking energy use assessment of HK-BEAM, BREEAM and LEED. Building and Environment, 43, 1882–1891.
    11. Lee, W.L., Chen, H. (2008). Benchmarking Hong Kong and China energy codes for residential buildings. Energy and Buildings, 40, 1628–1636.
    12. Lee, W.L., Yik, F.W.H. and Burnett, J. (2007). Assessing energy performance in the latest versions of Hong Kong Building Environmental Assessment Method(HK-BEAM). Energy and Buildings, 39, 343–354.
    13. Lee, W.S. (2008). Benchmarking the energy efficiency of government buildings with data envelopment analysis. Energy and Buildings, 40, 891-895.
    14. Lee, W.L., Yika, F.W.H., Jonesb, P., and Burnetta J. (2001). Energy saving by realistic design data for commercial buildings in Hong Kong. Applied Energy, 70, 59–75.
    15. Majid, H.S. and Lee, S.E. (2005). Establishment of energy management tools for facilities managers in the tropical region. Facilities, 23, (9/10), 416–425.
    16. Rey, F.J., Velasco, E. and Varela, F. (2007). Building Energy Analysis (BEA):A methodology to assess building energy labeling. Energy and Buildings, 39, 709–716.
    17. Santamouris, M. et al. (2007). Using intelligent clustering techniques to classify the energy performance of school buildings. Energy and Building, 39, 45-51.
    18. Sun, H.S., Lee, S.E. (2006). Case study of data centers’ energy performance. Energy and Buildings, 38, 522–533.
    19. Wan, K.S.Y., Yik, F.H.W. (2004). Representative building design and internal load patterns for modelling energy use in residential buildings in Hong Kong. Applied Energy, 77, 69–85.
    20. Yao, R., Steemers, K. (2005). Method of formulating energy load profile for domestic buildings in the UK. Energy and Buildings, 37, 663–671.
    21. Yik, F.W.H., Wan, K.S.Y. (2004). Building design and energy end-use characteristics of high-rise residential buildings in Hong Kong. Applied Energy, 78, 19–36.
    22. Zhu, Y. (2006). Applying computer-based simulation to energy auditing: A case study. Energy and Buildings, 38, 421–428.
    23. 中技社節能中心(2002)學校用電量及電費統計-高壓用電戶。
    24. 行政院經濟部(2008)。永續能源政策綱領。
    25. 行政院經濟部(2008)。政府機關及學校全面節能減碳措施。
    26. 杜功仁、賴靜芬、林承鴻(2010)。大學校園建築能源管理之策略與關鍵課題-以台灣科技大學為例。物業管理學報,第一卷第一期,pp. 55-64。
    27. 林憲德(2007)綠建築解說與評估手冊,內政部建築研究所。
    28. 莊宜蓁(2004)。醫院類-建築耗能因子研究及電腦模擬分析,台北科技大學碩士論文。
    29. 楊俊欣(2003)。辦公建築空調全年耗能電腦模擬與耗能因子解析,台北科技大學碩士論文。
    30. 經濟部能源局(2008)。能源政策與能源供需情勢。
    31. DOE2.com. Website: http://www.doe2.com/
    32. 台灣綠色生產力基金會。網址:http://www.ecct.org.tw/school/index.htm
    33. 行政院勞工委員會。網址:http://www.cla.gov.tw/
    34. 經濟部能源局。網址:http://www.moeaec.gov.tw/
    35. 內政部營建署。網址:http://www.cpami.gov.tw/

    QR CODE