簡易檢索 / 詳目顯示

研究生: 薛旻岳
Min-Yue Xue
論文名稱: 電致動力輔助化學機械平坦化之組合式電極盤設計應用於矽導微孔晶圓研究
Development of Modularized Conductive Plate in Electro-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Silicon-Via Wafer Planarization
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊敏聰
Mike Yang
楊宏智
Hong-Tsu Young
康來成
Lai-Cheng Kong
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 137
中文關鍵詞: 三維堆疊積體電路矽導微孔電致動力輔助化學機械平坦化製程銅薄膜化學機械拋光。
外文關鍵詞: 3DS-IC, TSV, EKF-CMP, Cu Blanket CMP
相關次數: 點閱:363下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著半導體產業發展,三維堆疊積體電路(3DS-IC)是一項突破莫爾定律的關鍵技術,由矽導微孔(Through-Silicon-Via, TSV)晶圓可作為中介層(Interposer)進行異質元件間的三維堆疊接合。矽導微孔晶圓因具高深寬比特徵,於電鍍填孔後銅膜較厚,本研究延續先前實驗室發展的電致動力輔助化學機械平坦化製程(EKF-CMP),主要為設計組合式電極,透過電致動力使拋光液產生擾動,提高磨粒使用率及電極重複使用等目標。研究方法先進行流場可視化驗證磨粒擾動情形,建構拋光墊上的反應區計算方法及分析其均勻性之模擬程式。實驗部分使用銅膜晶圓進行兩款拋光墊反應區設計之EKF-CMP製程並與傳統CMP製程比較,結果為新型反應區設計之EKF-CMP的材料移除率可提升24.1%,在TSV晶圓製程參數比較中,發現新型反應區設計之EKF-CMP製程較快達製程終點,且能減少29.7%的銅薄膜凹陷(Dishing)程度。實驗成果可驗證本研究之EKF-CMP製程及組合式電極設計可提升TSV-CMP之材料移除率並降低銅薄膜凹陷。未來研究可針對適用於EKF-CMP之拋光液和拋光墊設計進一步發展。


As rapid development of semiconductor industry, three dimensional stacking integrated circuit (3DS-IC) has been considered to be a critical technology to break through Moore’s Law. For 3DS-IC, the Through–Silicon-Via (TSV) wafer is usually used as an interposer for stacking or integrating heterogeneous element. The high aspect ratio (HAR) of TSV needs higher thickness of copper film by electroplating. This study is to improve the Electrical Kinetic-Force Assisted Chemical Mechanical Planarization (EKF-CMP) process with a modularized conductive plate design to generate electro-osmosis flow of slurry circulation for improving the removal rate of TSV Cu-CMP. The reaction region of polishing pad has been estimated with different pad punching grooving and hole arrangement by developed method and software. A visualization test result can be used for identifying uniformity of reaction region of pad in EKF-CMP. Experimental method of TSV-CMP by two kinds of pad reaction region design and conventional CMP haven been performed and investigated. Results have shown that the new type of EKF-CMP can achieve material removal rate (MRR) up to 24.19% of blanket Cu-CMP as compared with the conventional CMP. For TSV patterned Cu-CMP, dishing can be reduced about 29.7% compared with conventional CMP. Finally, the new EKF-CMP has been verified to improve the MRR and also reducing the dishing of TSV-CMP. Future work can focus on higher MRR with modified slurry and pad design in EKF-CMP.

摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 IX 表目錄 XIV 符號表 XV 第一章 導論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 5 第二章 文獻回顧 7 2.1 銅膜晶圓化學機械平坦化製程(Cu CMP) 8 2.2 矽導微孔晶圓化學機械平坦化製程(TSV CMP) 14 2.3 電化學機械平坦化製程(ECMP) 18 2.4 電致動力輔助化學機械拋光製程(EKF-CMP) 21 2.5 導電盤電極設計相關專利分析 25 2.6 文獻回顧總結 29 第三章 電致動力原理介紹 30 3.1 電致動力理論(Electro-Kinetic Force Mechanism) 30 3.1.1 電雙層(Electric Double Layer) 31 3.1.2 電致動力種類及機制 32 3.2 EKF-CMP導電盤設計及分析 35 3.2.1 導電盤改良與設計 35 3.2.2 導電盤模擬分析 38 3.2.3 導電盤模擬分析驗證 40 3.3 EKF-CMP拋光墊反應區分析原理 42 3.3.1 拋光墊反應區形貌繪製 42 3.3.2 拋光墊反應區與晶圓涵蓋率分析方法 44 3.3.3 拋光墊反應區與晶圓非均勻性分析方法 45 3.3.4 圖形使用者介面建立 46 3.4 EKF-CMP拋光墊反應區設計及分析 47 3.4.1 拋光墊反應區與晶圓涵蓋率分析結果 48 3.4.2 拋光墊反應區與晶圓非均勻性分析結果 50 3.4.3 拋光墊反應區分析結果比較 54 第四章 實驗設備及規劃 56 4.1 實驗設備 56 4.2 實驗耗材 57 4.2.1 拋光墊 57 4.2.2 拋光液 58 4.2.3 測試用晶圓 59 4.3 量測儀器 62 4.4 實驗規劃 63 第五章 結果與討論 65 5.1 銅膜晶圓EKF-CMP實驗(實驗I) 66 5.1.1 CMP製程參數探討 66 5.1.2 EKF-CMP偏壓參數探討 68 5.1.3 CMP及EKF-CMP製程差異探討 71 5.2 矽導微孔晶圓EKF-CMP實驗(實驗II) 74 5.2.1 摩擦力終點偵測 74 5.2.2 Erosion及Dishing量測 77 5.3 綜合結果討論 83 第六章 結論與建議 84 6.1 結論 84 6.2 建議 86 參考文獻 87 附錄 A 量測儀器及設備 91 附錄 B 銅片及銅膜晶圓金相實驗 93 附錄 C 程式模擬分析結果圖 95 附錄 D 平坦化實驗量測數據 111 附錄 E 交流電之EKF-CMP實驗 117 作者簡介 118

[1] S. C. Yosi and V. M. Dubin, "Copper electroless deposition technology for ultra-large-scaleintegration(ULSI) metallization", Microelectronic Engineering, vol. 33, pp. 47-58, 1997.
[2] H. Xiao,“半導體製程技術導論”,學銘圖書有限公司,2010。
[3] S. Kuramochi and S. Koiwa, "Cost Effective Interposer for Advanced Electronic Packages", IEEE, Electronic Components & Technology Conference, pp. 1673-1678, 2014.
[4] P. J. Tzeng and J. H. Lau, "Process Integration of 3D Si Interposer with Double-Sided Active Chip Attachments", IEEE, Electronic Components & Technology Conference, pp. 86-93, 2013.
[5] J. H. Lau, "TSV Interposers: The Most Cost-Effective Integrator for 3D IC Integration", ASME InterPACK, 2011.
[6] L. C. Yang, "Development of an Electrical Kinetic-Force Assisted Chemical Mechanical Planarization (EKF-CMP) for Functional Wafer Planarization", MS Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
[7] K. D. Beyer, "Method for Removing Protuberances at the Surface of a Semiconductor Wafer Using a Chemical-Mechanical Polishing Technique", US Patent 4671851, 1987.
[8] C. H. Hsieh, "Development of an Electrical Assisted Chemical Mechanical Polishing (EACMP) for Cu Film Planarization", MS Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2011.
[9] J. Cheng and T. Wang, "Material removal mechanism of copper chemical mechanical polishing in a periodate-based slurry", Applied Surface Science, vol. 337, pp. 130-137, 2015.
[10] K. Cadien and L. Nolan,"Handbook of Thin Film Deposition", 2012.
[11] R. Ihnfeldt and J. Talbot, "Effect of CMP Slurry Chemistry on Copper Nanohardness", Journal of the Electochemical Society, vol. 155, 2008.
[12] D. Tromans, "Aqueous Potential-pH Equilibria in Copper Benzotriazole Systems", Journal of the Electochemical Society, vol. 145, 1998.
[13] H. Lee and B. Park, "Mechanical effect of process condition and abrasive concentration on material removal rate profile in copper chemical mechanical planarization", journal of materials processing technology, vol. 209, pp. 1729-1735, 2009.
[14] K. H. Wei and Y. S. Wang, "The influence of abrasive particle size in copper chemical mechanical planarization", Surface & Coatings Technology, vol. 231, pp. 543-545, 2013.
[15] L. M. Nolan and K. C. Cadien, "Chemically enhanced synergistic wear: A copper chemical mechanical polishing case study", Wear, vol. 307, pp. 155-163, 2013.
[16] J. Li and Y. Liu, "Chemical roles on Cu-slurry interface during copper chemical mechanical planarization", Applied Surface Science, vol. 293, pp. 287-292, 2014.
[17] R. L. Rhoades and D. Malta, "Advances in CMP for TSV Reveal", ICPT, pp. 199-202, 2012.
[18] Y. Zhang, L. Li, and Z. Lu, "A survey of memory architecture for 3D chip multi-processors", microprocessors and Microsystems, vol. 38, pp. 415-430, 2015.
[19] K. Zoschke and H. Oppermann, "Wafer Level 3D System Integration based on Silicon Interposers with Through Silicon Vias", IEEE, pp. 8-13, 2012.
[20] M. Koyanagi, "Recent progress in 3D integration technology", IEICE Electronics Express, vol. 12, pp. 1-17, 2015.
[21] 劉建惟,“三維積體電路直通矽穿孔技術之應用趨勢與製程簡 介”,奈米通訊(NANO COMMUNICATION),2013。
[22] J. P. Gambino and S. A. Adderly, "An overview of through-silicon-via technology and manufacturing challenges", Microelectronic Engineering, vol. 135, pp. 73-106, 2015.
[23] S. Yoshimi and K. Fujimoto, "Development of TSV Interposer with 300 mm Wafer for 3D Packaging", Symposium on Design, Test, Integration and Packing of MEMS/MOEMS (DTIP), pp. 1-5, 2013.
[24] P. C. Lin and J. Xu, "TSV CMP Process Development and Pitting Defect Reduction", ICPT, pp. 193-198, 2012.
[25] J. C. Chen and J. H. Lau, "Effects of Slurry in Cu Chemical Mechanical Polishing (CMP) of TSVs for 3-D IC Integration", IEEE TRANSACTIONS ON COMPONENTS, vol. 2, 2012.
[26] Y. Wang and S. D. Tsai, "Electrochemical method for Ecmp polishing pad conditioning ", US Patent 7504018, 2009.
[27] M. H. Fang, "Research on Abrasive Free Electrochemical Mechanical Polishing (AF-ECMP) Process of Copper Film", MS Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2009.
[28] S. Tominaga and D. Abe, "Hybrid Electrochemical Mechanical Planarization Process for Cu Dual-Damascene Through-Silicon Via Using Noncontact Electrode Pad", Japanese Journal of Applied Physics, vol. 49, 2010.
[29] S. Joo and H. Liang, "Tribo-electrochemical characterization of copper thin films", Electrochimica Acta, vol. 99, pp. 133-137, 2013.
[30] J. K. So, "Conductive Polishing Pad with Anode and Cathode", R.O.C. Patent 200505632, 2005.
[31] W. Lee, "Methods and Apparatuses for Electrochemical Mechanical Polishing", R.O.C. Patent 200538233, 2005.
[32] C.-C. A. Chen and C. H. Hsieh, “電場輔助化學機械拋光系統及其方法”, R.O.C. Patent 201321129, 2013.
[33] M. P. Hughes,"Nanoelectromechanics in Engineering and Biology", CRC Press, 2003.
[34] R. J. Hunter,"Zeta Potential in Colloid Science :Principles and Applications", Academic Press, 1981.
[35] Y. Z. Shih, "The Effects of Electrode's Size and Shape on the Efficiency of a 3D Electro-Osmosis Collection Chip", MS Thesis, Department of Mechanical Engineering, Tatung University, Tatung University, 2009.
[36] 張有義,“膠體及界面化學入門”,高立圖書有限公司,1997。
[37] D. E. Garcia and A. Silva, "Spatial redistribution of nano-particles using electrokinetic micro-focuser", Proc. of SPIE vol. 6648, 2007.

QR CODE