簡易檢索 / 詳目顯示

研究生: 劉佳宜
Chia-Yi Liu
論文名稱: 硼摻雜及硼氮共摻雜石墨烯之蕭特基光感測特性研究
B-doped Graphene and B/N co-doped Graphene for Schottky Photodetector
指導教授: 周賢鎧
Shyan-kay Jou
口試委員: 王秋燕
Chiu-Yen Wang
施文欽
Wen-Ching Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 石墨烯硼摻雜硼氮共摻雜蕭特基光感測器
外文關鍵詞: graphene, boron-doped, B/N co-doped, Schottky, photodetector
相關次數: 點閱:376下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分為兩階段,第一階段以Cu(B)薄膜作為硼源,以化學氣相沉積法製備硼摻雜石墨烯,並以純石墨烯做為比較,探討其性質差異。由拉曼光譜、UV-vis光譜、XPS能譜分析其材料特性。於拉曼光譜可以觀察到純石墨烯(Pristine graphene, PG)於摻雜硼(Boron-doped graphene, BG)後,D band與D’ band強度皆變高,且2D band強度下降,此是由於硼摻雜進石墨烯晶格中,造成晶格扭曲所導致。另外,也將BG以氮氣微波電漿鍵入氮原子,以製備硼氮共摻雜石墨烯(Boron/Nitrogen co-doped graphene, BNG),觀察到2D band變寬且強度變低,可推測氮原子摻雜進BG中。
第二階段著重於元件效能,具體做法為:將純石墨烯以及硼摻雜石墨烯以及硼氮共摻雜石墨烯應用於蕭特基光感測器與電晶體元件上,以量測其電學性質與光學性質。
於室溫下量測I-V曲線以確認元件是否符合熱離子發射模型。PG/n-Si、BG/n-Si以及BNG/n-Si之能障高度分別為0.75 eV、0.77 eV與0.78 eV,而由能障高度可推算PG、BG以及BNG之功函數分別是4.80 eV、4.82 eV與4.83 eV,而於室溫(298 K)下之理想因子分別為2.40 、1.78以及5.02,由理想因子可推論BG/n-Si蕭特基光感測器最為符合熱離子發射模型。
進一步量測其光感測性能,會發現元件具有self-power之特性,即無需外加電壓下元件即可操作,PG/n-Si蕭特基光感測器與BG/n-Si蕭特基光感測器以及BNG/n-Si蕭特基光感測器之ON-OFF ratio分別為2.9 x 103與1.5 x 104以及1.7 x 103,上升/下降時間則分別為1.4 ms/25.9 ms、1 ms/22.9 ms及3.1 ms/51.0 ms。
另外,製備PG與BG上閘極場效電晶體以量測其電性行為表現,可知PG之狄拉克點位於閘極電壓29 V,而BG之狄拉克點位於閘極電壓125 V處,可知硼成功摻雜進碳晶格中,表現出p-type之行為。


This study can be separated into two parts. Firstly, we use Cu(B) film(300 nm) as boron source to synthesize boron doped graphene (BG) by chemical vapor deposition (CVD) and compare material properties with printine graphene (PG) which was synthesized by CVD process, too.
Raman spectroscopy, UV-vis and XPS were employed to characterize the structure and properties of PG and BG. Raman spectrum of BG shows stronger intensity of D-band and D’ band and the lower intensity of 2D band than those for PG. This was caused by defects that might be attributed to B doping to graphene leading deformation of the lattice structure of graphene.
Additionally, using nitrogen microwave plasma to dope nitrogen into BG, Raman spectrum of BNG shows that 2D band became broader and intensity of 2D band became lower than BG. This was caused by defect that might be attributed to N doping to graphene leading deformation of the lattice structure of graphene.
Secondly, we fabricated PG/n-Si Schottky photodetector, BG/n-Si Schottky photodetector and BNG/n-Si Schottky photodetector. We measured the I-V curve at room temperature to realize whether our device follows thermionic emission model or not. The Schottky barrier height of BG/n-Si Schottky is 0.77 eV, higher than that of 0.75 eV of PG/n-Si Schottky photodetector. However, the Schottky barrier height of BNG/n-Si Schottky photodetector is 0.78 eV, the highest. It can be extrapolated that nitrogen atoms doping into lattice and open the bandgap of graphene. The work function of PG, BG and BNG were 4.80 eV, 4.82 eV and 4.83 eV, respectively. And at 298 K the ideal factor of PG, BG and BNG were 2.40, 1.78 and 5.02, respectively. Conclusively, BG/n-Si Schottky photodetector is more correspond to thermionic emission model.
For PG/n-Si Schottky photodetector, BG/n-Si Schottky photodetector and BNG/n-Si Schottky photodetector, rising/falling times were 1.4 ms/25.9 ms, 1 ms/22.9 ms and 3.1 ms/51.0 ms, respectively. And ON-OFF ratio were 2.9 x 103, 1.5x 104 and 1.7 x 103, respectively.
We fabricated PG and BG top-gate field emission transistor to measure the electronic property. The gate voltages for Dirac point of PG and BG were 29 V and 125 V, respectively. Therefore, boron atoms is doped into the lattice of carbon network successfully and shows p-type behavior.

摘要 I Abstract II 第一章、緒論 1 1.1石墨烯的沿革 1 1.2石墨烯晶體結構與電性 2 第二章、文獻回顧 5 2.1石墨烯製程技術 5 2.1.1機械剝離法(mechanical exfoliation) 5 2.1.2磊晶成長法(epitaxial growth) 5 2.1.3氧化石墨烯化學還原法(reduction from graphene oxides) 6 2.1.4化學氣相沈積法(chemical vapor deposition, CVD) 6 2.2石墨烯之轉印製程 11 2.3摻雜石墨烯之文獻探討 15 2.4石墨烯電晶體元件之文獻探討 26 2.5石墨烯電晶體之Ion/Ioff ratio關係 34 2.6氧化層電容與介電常數之關係 34 2.7石墨烯光感測器元件之文獻探討 35 2.8研究動機 45 第三章、實驗儀器與步驟 46 3.1 實驗材料及藥品規格 46 3.2 實驗設備及分析儀器 48 3.3 實驗原理 48 3.3.1化學氣相沉積系統 (Chemical Vapor deposition system) 48 3.3.2微波電漿系統 (Microwave Plasma) 49 3.3.3磁控濺鍍 (Magnetron Sputtering) 49 3.3.4顯微拉曼光譜儀 (Micro-Raman spectroscopy) 49 3.3.5 X光光電子能譜儀 (X-ray Photoelectron Spectrum, XPS) 51 3.3.6紫外光可見光光譜儀 (UV-visible spectroscopy, UV-vis) 52 3.3.7光感測器量測系統 (Photodetector system) 52 3.4 實驗步驟 53 3.4.1實驗步驟及分析 53 3.4.2基板清洗 53 3.4.3以化學氣相沉積法(CVD)成長石墨烯 54 3.4.4轉移至特定基板 55 3.5背閘極電晶體元件製備 57 3.5.1電晶體元件設計 57 3.5.2微影製程 58 3.5.3電晶體元件製備 60 3.5.4 Lift-off製程步驟 62 3.6上閘極電晶體元件製備 62 3.7光感測器元件製備 63 第四章、結果與討論 65 4.1純石墨烯與硼摻雜石墨烯與硼氮共摻雜石墨烯之結構與性質討論 65 4.1.1拉曼光譜結果分析 65 4.1.2 UV-vis穿透度結果分析 68 4.1.3 XPS結果分析 69 4.2純石墨烯(PG)、硼摻雜石墨烯(BG)以及硼氮共摻雜石墨烯(BNG)之蕭特基光感測器結果分析 75 4.2.1蕭特基二極體之室溫分析 75 4.2.2蕭特基二極體之變溫分析 78 4.2.3蕭特基二極體之真空環境與大氣環境下光感量測比較 82 4.2.4蕭特基二極體應用於光感測器之性質分析 85 4.3 PG與BG電晶體元件之總檢討與特性比較 91 第五章、結論 94 第六章、未來展望 96 第七章、參考文獻 97 附錄 103

[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60 : Buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
[2] S. Ijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[3] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[4] N. D. Mermin, "Crystalline Order in Two Dimensions," Physical Review, vol. 176, pp. 250-254, 1968.
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
[6] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, vol. 446, pp. 60-63, 2007.
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
[8] B. Guo, L. Fang, B. Zhang, and J. R. Gong, "Graphene Doping: A Review," Insciences Journal, vol. 1(2), pp. 80-89, 2011.
[9] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, vol. 320, p. 1308, 2008.
[10] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[11] 劉偉仁, 蘇清源, 江偉宏, 郭信良, 吳定宇, 陳貴賢, 許新城, 孫嘉良, 許淑婷, 沈駿, 邱鈺蛟, 蕭碩信, and 張峰碩, 石墨烯技術. 台北市: 五南書局, 2015.
[12] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[13] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, vol. 8(3), pp. 902-907, 2008.
[14] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, 2008.
[15] W. Wang, T. Lil, and Y. Wang, "Photovoltaic Response of N -doped Graphene-based Photodetector," IEEE-NEMS, pp. 5-8, 2012.
[16] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics," J. Phys. Chem. B, vol. 108 (52), pp. 19912-19916, 2004.
[17] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. C. Marchenkov, E. H., P. N. First, and W. A. de Heer, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, 2006.
[18] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[19] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, 2009.
[20] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst," Nano Letters, vol. 10, pp. 4128-33, 2010.
[21] C. Hwang, K. Yoo, S. J. Kim, E. K. Seo, H. Yu, and L. P. Biró, "Initial Stage of Graphene Growth on a Cu Substrate," The Journal of Physical Chemistry C, vol. 115, pp. 22369-22374, 2011.
[22] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, "Graphene films with large domain size by a two-step chemical vapor deposition process," Nano Letters, vol. 10, pp. 4328-34, 2010.
[23] P. Zhao, A. Kumamoto, S. Kim, X. Chen, B. Hou, S. Chiashi, E. Einarsson, Y. Ikuhara, and S. Maruyama, "Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol," The Journal of Physical Chemistry Chemistry, vol. 117, pp. 10755-10763, 2013.
[24] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Letters, vol. 9, pp. 4268-4272, 2009.
[25] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature Nanotechnology, vol. 5, pp. 574-578, 2010.
[26] C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen, and L. J. Li, "Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition," Nano Letters, vol. 11, pp. 3612-6, 2011.
[27] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, "Transfer-Free Batch Fabrication of Single Layer Graphene Transistors," Nano Letters, vol. 9 (12), pp. 4479–4483, 2009.
[28] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Letters, vol. 9(12), pp. 4359-4363, 2009.
[29] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growth of graphene from solid carbon sources," Nature, vol. 468, pp. 549-52, Nov 25 2010.
[30] P. A. Denis, "Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur," Chemical Physics Letters, vol. 492, pp. 251-257, 2010.
[31] T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, "Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid," New Journal of Chemistry, vol. 36, pp. 1385-1391, 2012.
[32] H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, and Z. Liu, "Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition," Small, vol. 9, pp. 1316-1320, 2013.
[33] Y. B. Tang, L. C. Yin, Y. Yang, X. H. Bo, Y. L. Cao, H. E. Wang, W. J. Zhang, I. Bello, S. T. Lee, H. M. Cheng, and C. S. Lee, "Tunable Band Gaps and p-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma," ACS Nano, vol. 6(3), pp. 1970-1978, 2012.
[34] X. Li, L. Fan, Z. Li, K. Wang, M. Zhong, J. Wei, D. Wu, and H. Zhu, "Boron Doping of Graphene for Graphene-Silicon p-n Junction Solar Cells," Advanced Energy Materials, vol. 2, pp. 425-429, 2012.
[35] Y. A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, C. Casiraghi, A. Eckmann, K. S. Novoselov, R. Saito, and M. S. Dresselhaus, "Raman Spectroscopy of Boron-Doped Single-Layer Graphene," ACS Nano, vol. 6 (7), pp. 6293-6300, 2012.
[36] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu, "Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources," Advanced Materials, vol. 23, pp. 1020-1024, 2011.
[37] D. A. Boyd, W. H. Lin, C. C. Hsu, M. L. Teague, C. C. Chen, Y. Y. Lo, W. Y. Chan, W. B. Su, T. C. Cheng, C. S. Chang, C. I. Wu, and N. C. Yeh, "Single-step deposition of high-mobility graphene at reduced temperatures," Nature Communications vol. 6, pp. 1-8, 2015.
[38] 葉文冠、翁俊仁, 半導體製程技術與元件設計. 台北市: 東華書局, 2008.
[39] X. Wang, L. Zhi, and K. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Letters, vol. 8(1), pp. 323-327, 2007.
[40] C. L. Hsu, C. T. Lin, J. H. Huang, C. W. Chu, K. H. Wei, and L. J. Li, "Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells," ACS Nano, vol. 6(6), pp. 5031-5039, 2012.
[41] X. Wang, D. Li, Q. Zhang, L. Zou, F. Wang, J. Zhou, and Z. Zhang, "Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon," Thin Solid Films, vol. 592, pp. 281-286, 2015.
[42] C. C. Chen, M. Aykol, C. C. Chang, A. F. Levi, and S. B. Cronin, "Graphene-silicon Schottky diodes," Nano Letters, vol. 11, pp. 1863-7, 2011.
[43] Z. Zhang, Y. Guo, X. Wang, D. Li, F. Wang, and S. Xie, "Direct Growth of Nanocrystalline Graphene/Graphite Transparent Electrodes on Si/SiO2 for Metal-Free Schottky Junction Photodetectors," Advanced Functional Materials, vol. 24, pp. 835-840, 2014.
[44] C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, "Monolayer graphene film/silicon nanowire array Schottky junction solar cells," Applied Physics Letters, vol. 99, p. 133113, 2011.
[45] T. Feng, D. Xie, Y. Lin, Y. Zang, T. Ren, R. Song, H. Zhao, H. Tian, X. Li, H. Zhu, and L. Liu, "Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate," Applied Physics Letters, vol. 99, p. 233505, 2011.
[46] X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, "Graphene-on-silicon Schottky junction solar cells," Advanced Materials, vol. 22, pp. 2743-2748, 2010.
[47] X. An, F. Liu, Y. J. Jung, and S. Kar, "Tunable graphene-silicon heterojunctions for ultrasensitive photodetection," Nano Letters, vol. 13, pp. 909-916, 2013.
[48] D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, "Surface Transfer Doping-Induced, High-Performance Graphene/Silicon Schottky Junction-Based, Self-Powered Photodetector," Small, vol. 11, pp. 4829-4836, 2015.
[49] D. J. Gardiner, Practical Raman spectroscopy. Berlin: Springer-Verlag, 1989.
[50] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[51] D. J. O'Connor, B. A. Sexton, and R. S. C. Smart, Surface Analysis Methods in Materials Science. Berlin: Springer-Verlag Berlin Heidelberg, 2003.
[52] 郭修安, "矽摻雜石墨烯及其蕭特基光感測特性," 國立台灣科技大學材料科學與工程研究所碩士學位論文, 民國105年.
[53] A. Kumari, N. Prasad, P. K. Bhatnagar, P. C. Mathur, A. K. Yadav, C. V. Tomy, and C. S. Bhatia, "Electrical transport properties of polycrystalline CVD graphene on SiO2/Si substrate," Diamond and Related Materials, vol. 45, pp. 28-33, 2014.
[54] D. S. Lee, C. Riedl, B. Krauss, K. V. Klitzing, U. Starke, and J. H. Smet, "Raman Spectra of Epitaxial Graphene on SiC and of Epitaxial Graphene Transferred to SiO2," Nano Letters, vol. 8(12), pp. 4320-4325, 2008.
[55] J. Jiang, R. Pachter, F. Mehmood, A. E. Islam, B. Maruyama, and J. J. Boeckl, "A Raman spectroscopy signature for characterizing defective single-layer graphene: Defect-induced I(D)/I(D′) intensity ratio by theoretical analysis," Carbon, vol. 90, pp. 53-62, 2015.
[56] H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, "Vibrational properties of graphene and graphene layers," Journal of Raman Spectroscopy, vol. 40, pp. 1791-1796, 2009.
[57] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, vol. 320 (5881), p. 1308, 2008.
[58] N. An, F. Zhang, Z. Hu, Z. Li, L. Li, Y. Yang, B. Guo, and Z. Lei, "Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage," RSC Advances, vol. 5, pp. 23942-23951, 2015.
[59] H. Huang and X. Wang, "Design and synthesis of Pd-MnO2 nanolamella-graphene composite as a high-performance multifunctional electrocatalyst towards formic acid and methanol oxidation," Physical Chemistry Chemical Physics, vol. 15, pp. 10367-10375, 2013.
[60] W. T. Yang, W. J. Su, H. H. Cheng, G. Y. Lin, J. Y. H., Y. L. Wang, G. W. S., and L. K. Y., "Graphene lateral p-n diode fabricated by nitrogen plasma treatment," presented at the MRS-T annual meeting, Industrial Technology Research Institute, 2017.

無法下載圖示 全文公開日期 2022/08/29 (校內網路)
全文公開日期 2027/08/29 (校外網路)
全文公開日期 2027/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE