簡易檢索 / 詳目顯示

研究生: 伊藤大地
Daichi Ito
論文名稱: 基於氧化石墨烯、導電碳、殼聚醣複合物檢測CA125之無標記型免疫傳感器之開發
Development of a Label-Free Immunosensor for Detection of CA125 based on rGO-Super P-Chitosan composites
指導教授: 王丞浩
Chen-Hao Wang
王復民
Fu-Ming Wang
口試委員: 邱德威
Te-Wei Chiu
王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
郭俞麟
Yu-Lin Kuo
王復民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 1~52/60
中文關鍵詞: CA125氧化石墨烯導電碳殼聚醣點化學免疫傳感器
外文關鍵詞: CA125, rGO, Super P, Chitosan, electrochemical immunosensor
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在卵巢癌治療與檢測中,早期治療與發現是個關鍵技術,因此,本研究開發了一款能用於早期檢測卵巢癌細胞中CA125抗原(CA125)的電化學免疫傳感器。首先,將高溫處理過後的還原氧化石墨烯(rGO)、導電碳(SP)及殼聚醣(chitosan)混和成複合凝膠狀態,透過簡單滴加法的方式對玻璃碳電極(GCE)進行表面改質,再利用殼聚醣與戊二醛的分子間交互作用,使CA125抗原連接於表面,並利用牛血清白蛋白(BSA)填補rGO剩餘的接枝空位,避免其餘蛋白質吸附在其表面而產生的干擾現象。本研究測試方式採用電化學的循環伏安法(CV)、電化學阻抗譜(EIS)以及微分脈衝伏安法(DPV)針對BSA / Ab / rGO - SP - Ch / GCE – CA125等進行電化學性質測試。電化學免疫傳感器對CA125抗原的檢測具有良好的反應性,線性範圍在0.08 ~ 50 g mL-1。基於所開發的免疫傳感器具有簡單製造方法與高靈敏度的特性,所開發的免疫傳感器將有效的提供用於CA 125抗原的檢測。


     In treatment of ovarian cancer, its effectiveness depends upon the early detection of the malignancy. Herein, we report on the development of an electrochemical immunosensor for early detection of carcinoma antigen 125 (CA125). A glassy carbon electrode was firstly modified with high temperature treated reduced graphene oxide (rGO), conductive carbon black super P (SP) and chitosan (Ch) composite gel by simply dropping method, then the gel was fixed on GCE surface using intramolecular crosslinking reaction of chitosan with glutaraldehyde. Consecutively, it was conjugated with anti - CA125 monoclonal antibody (Ab) using intermolecular crosslinking reaction. The nonspecific binding sites were followed by enclosed with bovine serum albumin (BSA). Cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry were used to investigate the electrochemical properties of the developed BSA/Ab/rGO-SP-Ch/GCE immunosensor. The electrochemical immunosensor offers good response for the detection of CA125 antigen with a linear range (0.08 – 50 g mL-1). Based on the simple fabrication method and high sensitivity of the developed immunosensor, the developed immunosensor will provide a sensitive, convenient approach to be used for detection of CA 125 antigen.

    摘要 Abstract Acknowledgements Table of Contents List of Figures CHAPTER I INTRODUCTION CHAPTER II LITERATURE REVIEW 2.1 Ovarian cancer 2.2 Biosensor 2.3 Materials CHAPTER III Experimental procedures 3.1 Materials and reagents 3.2 Instruments 3.3 Experimental procedures 3.4 Field Emission Scanning Electron Microscopy (FE-SEM) CHAPTER IV Results and discussion 4.1 The effect of carbon support 4.2 Comparison of carbon materials by SEM 4.3 Characterization of chitosan coated GCE 4.4 Surface modification and characterization of GCE 4.5 Different concentration of CA125 CHAPTER V Experimental procedures References

    [1] J. Das and S. O. Kelley, “Protein Detection Using Arrayed Microsensor Chips: Tuning Sensor Footprint to Achieve Ultrasensitive Readout of CA-125 in Serum and Whole Blood,” Anal. Chem, vol. 83, pp. 1167–1172, 2011.
    [2] M. Johari-Ahar et al., “An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients †,” vol. 7, p. 3768, 2015.
    [3] S. Singh, S. K. Tuteja, D. Sillu, A. Deep, and C. R. Suri, “Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin,” Microchim. Acta, vol. 183, no. 5, pp. 1729–1738, May 2016.
    [4] B. D. Malhotra, S. Srivastava, M. A. Ali, and C. Singh, “Nanomaterial-Based Biosensors for Food Toxin Detection,” Appl. Biochem. Biotechnol., vol. 174, no. 3, pp. 880–896, Oct. 2014.
    [5] C. M. Pandey, I. Tiwari, V. N. Singh, K. N. Sood, G. Sumana, and B. D. Malhotra, “Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria,” Sensors Actuators B. Chem., vol. 238, pp. 1060–1069, 2017.
    [6] R. Singh, S. Hong, and J. Jang, “Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform,” Sci. Rep., vol. 7, no. 1, p. 42771, Dec. 2017.
    [7] M. Ayá N-Varela, J. I. Paredes, S. Villar-Rodil, R. Rozada, A. Martínez-Alonso, and J. M. D. Tascó, “A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents,” Carbon N. Y., vol. 75, pp. 390–400, 2014.
    [8] D. W. Johnson, B. P. Dobson, and K. S. Coleman, “A manufacturing perspective on graphene dispersions,” Curr. Opin. Colloid Interface Sci., vol. 20, pp. 367–382, 2015.
    [9] J. D. Renteria et al., “Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature,” Adv. Funct. Mater., vol. 25, no. 29, pp. 4664–4672, 2015.
    [10] K. Liu, S. Ronca, E. Andablo-Reyes, G. Forte, and S. Rastogi, “Unique Rheological Response of Ultrahigh Molecular Weight Polyethylenes in the Presence of Reduced Graphene Oxide,” Macromolecules, vol. 48, no. 1, pp. 131–139, Jan. 2015.
    [11] B. V Chikkaveeraiah, A. A. Bhirde, N. Y. Morgan, H. S. Eden, and X. Chen, “Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers,” 2012.
    [12] D. W. Kimmel, G. Leblanc, M. E. Meschievitz, and D. E. Cliffel, “Electrochemical Sensors and Biosensors,” Anal. Chem, vol. 84, pp. 685–707, 2012.
    [13] D. L. Meany, L. J. Sokoll, and D. W. Chan, “Early Detection of Cancer: Immunoassays for Plasma Tumor Markers.”
    [14] S. Sarojini et al., “Early detection biomarkers for ovarian cancer.,” J. Oncol., vol. 2012, p. 709049, Dec. 2012.
    [15] R. C. Bast, “Status of Tumor Markers in Ovarian Cancer Screening,” J. Clin. Oncol., vol. 21, no. 90100, p. 200s–205, May 2003.
    [16] “Ovarian Cancer by the Numbers.” [Online]. Available: https://www.healthline.com/health/cancer/ovarian-cancer-facts-statistics-infographic#1. [Accessed: 04-Jan-2019].
    [17] B. M. Reid, J. B. Permuth, and T. A. Sellers, “Epidemiology of ovarian cancer: a review.,” Cancer Biol. Med., vol. 14, no. 1, pp. 9–32, Feb. 2017.
    [18] “Cancer Statistics Review, 1975-2013 - Previous Version - SEER Cancer Statistics Review.” [Online]. Available: https://seer.cancer.gov/archive/csr/1975_2013/. [Accessed: 28-Dec-2018].
    [19] C. Allemani et al., “Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2),” Lancet, vol. 385, no. 9972, pp. 977–1010, 2015.
    [20] J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer, vol. 127, no. 12, pp. 2893–2917, Dec. 2010.
    [21] K. Wei et al., “Ovary cancer incidence and mortality in China, 2011.,” Chin. J. Cancer Res., vol. 27, no. 1, pp. 38–43, Feb. 2015.
    [22] F. Bray, A. H. Loos, S. Tognazzo, and C. La Vecchia, “Ovarian cancer in Europe: Cross-sectional trends in incidence and mortality in 28 countries, 1953-2000,” Int. J. Cancer, vol. 113, no. 6, pp. 977–990, Mar. 2005.
    [23] M. P. Coleman, J. Estève, P. Damiecki, A. Arslan, and H. Renard, “Trends in cancer incidence and mortality.,” IARC Sci. Publ., no. 121, pp. 1–806, 1993.
    [24] H. L. Howe et al., “Annual report to the nation on the status of cancer, 1975–2003, featuring cancer among U.S. Hispanic/Latino populations,” Cancer, vol. 107, no. 8, pp. 1711–1742, Oct. 2006.
    [25] M. Malvezzi, G. Carioli, T. Rodriguez, E. Negri, and C. La Vecchia, “Global trends and predictions in ovarian cancer mortality,” Ann. Oncol., vol. 27, no. 11, pp. 2017–2025, Nov. 2016.
    [26] W. Chen et al., “Cancer statistics in China, 2015,” CA. Cancer J. Clin., vol. 66, no. 2, pp. 115–132, Mar. 2016.
    [27] Z. Teng et al., “Increase of Incidence and Mortality of Ovarian Cancer during 2003–2012 in Jiangsu Province, China,” Front. Public Heal., vol. 4, Jul. 2016.
    [28] R. Sankaranarayanan and J. Ferlay, “Worldwide burden of gynaecological cancer: The size of the problem,” Best Pract. Res. Clin. Obstet. Gynaecol., vol. 20, no. 2, pp. 207–225, Apr. 2006.
    [29] V. W. Chen, B. Ruiz, J. L. Killeen, T. R. Coté, X. Cheng Wu, and C. N. Correa, “Pathology and Classification of Ovarian Tumors.”
    [30] V. Rojas et al., “Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment,” Int. J. Mol. Sci., vol. 17, no. 12, p. 2113, Dec. 2016.
    [31] S. Granberg, M. Wikland, and I. Jansson, “Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis: criteria to be used for ultrasound evaluation.,” Gynecol. Oncol., vol. 35, no. 2, pp. 139–44, Nov. 1989.
    [32] P. C. Prorok et al., “Design of the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial,” Control. Clin. Trials, vol. 21, no. 6, p. 273S–309S, Dec. 2000.
    [33] S. T. A, “Screening for ovarian cancer: a systematic review Authors’ objectives,” 2017.
    [34] S. S. Buys et al., “Effect of Screening on Ovarian Cancer Mortality,” JAMA, vol. 305, no. 22, p. 2295, Jun. 2011.
    [35] P. F. Pinsky et al., “Extended mortality results for ovarian cancer screening in the PLCO trial with median 15 years follow-up,” Gynecol. Oncol., vol. 143, no. 2, pp. 270–275, Nov. 2016.
    [36] I. J. Jacobs et al., “Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial,” Lancet, vol. 387, no. 10022, pp. 945–956, Mar. 2016.
    [37] J. Li, S. Li, and C. F. Yang, “Electrochemical Biosensors for Cancer Biomarker Detection,” Electroanalysis, vol. 24, no. 12, pp. 2213–2229, Dec. 2012.
    [38] Y. Xiang and Y. Lu, “Portable and Quantitative Detection of Protein Biomarkers and Small Molecular Toxins Using Antibodies and Ubiquitous Personal Glucose Meters,” Anal. Chem., vol. 84, no. 9, pp. 4174–4178, May 2012.
    [39] Z. Gu et al., “Postprandial increase in serum CA125 as a surrogate biomarker for early diagnosis of ovarian cancer,” J. Transl. Med., vol. 16, no. 1, p. 114, Dec. 2018.
    [40] R. C. Bast et al., “A Radioimmunoassay Using a Monoclonal Antibody to Monitor the Course of Epithelial Ovarian Cancer,” N. Engl. J. Med., vol. 309, no. 15, pp. 883–887, Oct. 1983.
    [41] P. L. Devine, M. A. McGuckin, and B. G. Ward, “Circulating mucins as tumor markers in ovarian cancer (review).,” Anticancer Res., vol. 12, no. 3, pp. 709–17.
    [42] F. J. Xu et al., “OVX1 radioimmunoassay complements CA-125 for predicting the presence of residual ovarian carcinoma at second-look surgical surveillance procedures.,” J. Clin. Oncol., vol. 11, no. 8, pp. 1506–1510, Aug. 1993.
    [43] L. C. Clark and C. Lyons, “ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY,” Ann. N. Y. Acad. Sci., vol. 102, no. 1, pp. 29–45, Dec. 2006.
    [44] D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron., vol. 16, no. 1–2, pp. 121–131, Jan. 2001.
    [45] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta, vol. 737, pp. 1–21, Aug. 2012.
    [46] J. Wang, “Sol–gel materials for electrochemical biosensors,” Anal. Chim. Acta, vol. 399, no. 1–2, pp. 21–27, Nov. 1999.
    [47] J. Lin, Z. Wei, and P. Chu, “A label-free immunosensor by controlled fabrication of monoclonal antibodies and gold nanoparticles inside the mesopores,” Anal. Biochem., vol. 421, no. 1, pp. 97–102, Feb. 2012.
    [48] J.-D. Qiu, R.-P. Liang, R. Wang, L.-X. Fan, Y.-W. Chen, and X.-H. Xia, “A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix,” Biosens. Bioelectron., vol. 25, no. 4, pp. 852–857, Dec. 2009.
    [49] J. Han, J. Ma, and Z. Ma, “One-step synthesis of graphene oxide–thionine–Au nanocomposites and its application for electrochemical immunosensing,” Biosens. Bioelectron., vol. 47, pp. 243–247, Sep. 2013.
    [50] W. Shi and Z. Ma, “A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane,” Biosens. Bioelectron., vol. 26, no. 6, pp. 3068–3071, Feb. 2011.
    [51] S. Weng et al., “Label-free electrochemical immunosensor based on K3[Fe(CN)6] as signal for facile and sensitive determination of tumor necrosis factor-alpha,” Sensors Actuators B Chem., vol. 184, pp. 1–7, Jul. 2013.
    [52] Y. Shen, G. Shen, and Y. Zhang, “A versatile matrix of an ionic liquid functionalized with aldehyde and ferrocene groups for label-free electrochemical immunosensors,” Anal. Methods, vol. 10, no. 14, pp. 1612–1617, Apr. 2018.
    [53] R. Li et al., “4-Amino-1-(3-mercapto-propyl)-pyridine hexafluorophosphate ionic liquid functionalized gold nanoparticles for igg immunosensing enhancement,” Anal. Chem., vol. 86, no. 11, pp. 5300–5307, 2014.
    [54] J. Liu et al., “Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam,” Biosens. Bioelectron., vol. 65, pp. 281–286, 2015.
    [55] I.-H. Cho et al., “Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification,” Sensors, vol. 18, no. 2, p. 207, Jan. 2018.
    [56] D. R. Dreyer, R. S. Ruoff, and C. W. Bielawski, “From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future.”
    [57] P. R. Wallace and P. R. W. Ace, “The Band Theory of Graphite,” 1947.
    [58] K. S. Novoselov et al., “Electric field effect in atomically thin carbon films.,” Science, vol. 306, no. 5696, pp. 666–9, Oct. 2004.
    [59] E. Fitzer, K.-H. Kochling, H. P. Boehm, and H. Marsh, “Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995),” Pure Appl. Chem., vol. 67, no. 3, pp. 473–506, Jan. 1995.
    [60] N. Hauptman, A. Vesel, V. Ivanovski, and M. K. Gunde, “Electrical conductivity of carbon black pigments,” Dye. Pigment., vol. 95, no. 1, pp. 1–7, Oct. 2012.
    [61] B. Dinesh, R. Saraswathi, and A. Senthil Kumar, “Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid,” Electrochim. Acta, vol. 233, pp. 92–104, Apr. 2017.
    [62] Y. Liu, H. Zheng, and M. Liu, “High performance strain sensors based on chitosan/carbon black composite sponges,” Mater. Des., vol. 141, pp. 276–285, Mar. 2018.
    [63] Y. Huang, J. Zhang, and J. Pu, “Measurement Science and Technology Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric Related content Resistive pressure sensor for high-sensitivity e-skin based on porous sponge dip-coated CB/MWCNTs/SR conductive composites,” 2016.
    [64] M. Baccarin, F. A. Santos, F. C. Vicentini, V. Zucolotto, B. C. Janegitz, and O. Fatibello-filho, “Electrochemical sensor based on reduced graphene oxide / carbon black / chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples,” vol. 799, no. March, pp. 436–443, 2017.
    [65] M. Huang, L. B. Tunnicliffe, J. Zhuang, W. Ren, H. Yan, and J. J. C. Busfield, “Strain-Dependent Dielectric Behavior of Carbon Black Reinforced Natural Rubber,” Macromolecules, vol. 49, no. 6, pp. 2339–2347, Mar. 2016.
    [66] K. G. Princy, R. Joseph, and C. S. Kartha, “Studies on conductive silicone rubber compounds,” J. Appl. Polym. Sci., vol. 69, no. 5, pp. 1043–1050, Aug. 1998.
    [67] †,‡ Hyunmin Yi et al., “Biofabrication with Chitosan,” 2005.
    [68] F. J. Pavinatto, L. Caseli, and O. N. Oliveira, “Chitosan in Nanostructured Thin Films,” Biomacromolecules, vol. 11, no. 8, pp. 1897–1908, Aug. 2010.
    [69] S. V Madihally and H. W. Matthew, “Porous chitosan scaffolds for tissue engineering.,” Biomaterials, vol. 20, no. 12, pp. 1133–42, Jun. 1999.
    [70] M. Rinaudo, “Chitin and chitosan: Properties and applications,” Prog. Polym. Sci., vol. 31, no. 7, pp. 603–632, Jul. 2006.
    [71] M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, “Chitosan—A versatile semi-synthetic polymer in biomedical applications,” Prog. Polym. Sci., vol. 36, no. 8, pp. 981–1014, Aug. 2011.
    [72] J. Berger, M. Reist, J. . Mayer, O. Felt, and R. Gurny, “Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications,” Eur. J. Pharm. Biopharm., vol. 57, no. 1, pp. 35–52, Jan. 2004.
    [73] Nadège Boucard, and Christophe Viton, and A. Domard*, “New Aspects of the Formation of Physical Hydrogels of Chitosan in a Hydroalcoholic Medium,” 2005.
    [74] H. P. Brack, S. A. Tirmizi, and W. M. Risen, “A spectroscopic and viscometric study of the metal ion-induced gelation of the biopolymer chitosan,” Polymer (Guildf)., vol. 38, no. 10, pp. 2351–2362, May 1997.
    [75] † Laurent Dambies, † Thierry Vincent, ‡ and Alain Domard, and † Eric Guibal*, “Preparation of Chitosan Gel Beads by Ionotropic Molybdate Gelation,” 2001.
    [76] W.-S. Hung et al., “Fabrication of hydrothermally reduced graphene oxide/chitosan composite membranes with a lamellar structure on methanol dehydration,” Carbon N. Y., vol. 117, pp. 112–119, Jun. 2017.
    [77] H.-H. Huang, R. K. Joshi, K. K. H. De Silva, R. Badam, and M. Yoshimura, “Fabrication of reduced graphene oxide membranes for water desalination,” J. Memb. Sci., vol. 572, pp. 12–19, Feb. 2019.
    [78] P. Bansal, A. S. Panwar, and D. Bahadur, “Molecular-Level Insights into the Stability of Aqueous Graphene Oxide Dispersions,” J. Phys. Chem. C, vol. 121, no. 18, pp. 9847–9859, May 2017.
    [79] M. Singh, A. Yadav, S. Kumar, and P. Agarwal, “Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp 2 /sp 3 fraction,” Appl. Surf. Sci., vol. 326, pp. 236–242, 2015.
    [80] M. Choudhary, K. Arora, M. Choudhary, and S. Kaur, “Lung Cancer Diagnosis via Interfacing Bio-nano-molecular System: hTERT, Chitosan, and Carbon Nanotubes,” in 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, 2014, pp. 559–561.
    [81] Y. Wan, Z. Lin, D. Zhang, Y. Wang, and B. Hou, “Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria,” Biosens. Bioelectron., vol. 26, no. 5, pp. 1959–1964, Jan. 2011.
    [82] M. Liu et al., “Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method,” Beilstein J. Nanotechnol, vol. 9, pp. 1200–1210, 2018.
    [83] A. J. Bard, L. R. Faulkner, and J. Wiley, “ELECTROCHEMICAL METHODS Fundamentals and Applications,” 2001.
    [84] L. M. Torres, A. F. Gil, L. Galicia, and I. González, “Understanding the Difference between Inner- and Outer-Sphere Mechanisms: An Electrochemical Experiment,” J. Chem. Educ., vol. 73, no. 8, p. 808, Aug. 1996.
    [85] X. Ma, Y. Jiang, F. Jia, Y. Yu, J. Chen, and Z. Wang, “An aptamer-based electrochemical biosensor for the detection of Salmonella,” J. Microbiol. Methods, vol. 98, no. 1, pp. 94–98, 2014.
    [86] P. Singh, S. K. Pandey, J. Singh, S. Srivastava, S. Sachan, and S. K. Singh, “Biomedical Perspective of Electrochemical Nanobiosensor,” Nano-Micro Lett., vol. 8, no. 3, pp. 193–203, Jul. 2016.

    QR CODE