簡易檢索 / 詳目顯示

研究生: 蔡汶庭
Wen-Ting Tsai
論文名稱: 以氮摻雜還原氧化石墨烯包覆三氧化二鐵結構應用於快充電鋰離子電池中陽極電極之研究
Study on the application of nitrogen-doped reduced graphene oxide coated Fe2O3 structure in the anode electrode of fast-charging Lithium-ion batteries
指導教授: 戴龑
Yian Tai
口試委員: 戴龑
Yian Tai
何郡軒
Jinn-Hsuan Ho
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 109
中文關鍵詞: 鋰離子電池氮摻雜三氧化二鐵還原氧化石墨烯、三氧化二鐵
外文關鍵詞: Lithium-ion batteries, nitrogen doping, RGO, Fe2O3
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是想透過低溫(<150℃)水熱法摻雜氮於還原氧化石墨烯(RGO)表面上,氮原子可以增加極性及電子親和性,以及增加石墨的電導度和碳-碳間的活性空缺,接著透過混合攪拌方式加入鐵源,最後在氮氣下進行500℃鍛燒,使其均勻分散於還原氧化石墨烯表面,以提升鋰離子電池快充性能。
    首先吾人透過改變乾燥溫度以改良傳統還原氧化石墨烯之赫馬法,將石墨直接合成為還原氧化石墨烯,還原氧化石墨烯在BET量測結果顯示為22.52nm中孔(Mesopore),比表面積為422.5m2/g,此材料於電池充放條件為4.0C倍率下,具有180mAh/g比電容量,接著將尿素作為摻氮合成的前驅物進而提升倍率性能,而主要原因 amino/amide的氮官能基轉變成pyridinic/pyrrolic氮官能基,由於此官能基上的氮原子在還原氧化石墨烯上並非平面結構,氮原子上的孤對電子易與還原氧化石墨烯 上的π電子形成共振結構,因此共振結構會使電子由單重態傳導到三重態,增加電子的生存時間,藉以提升倍率充電性能,不同摻氮含量之還原氧化石墨烯於4.0C倍率下,具有210mAh/g至350mAh/g比電容量;而最後利用混合鐵源後鍛燒,將0.2NRGO/Fe2O3結構在200圈1.0C倍率充電循環中,可得到良好的比電容量,而比電容量增加隨著圈數增加而增加,可以歸功於鋰離子擴散在循環中激活及穩定、Fe2O3的逐漸活化性質。


    This study is that hoped to improve the fast-charging performance of lithium-ion batteries(LIBs) by doped nitrogen on the surface of reduced graphene oxide (RGO) though hydrothermal treatment at low-temperature process(<150℃), and mixing the ferric oxides then calcination at 500℃ for 4 hours in which uniformly dispersion the particles.
    First, I used Improved Hemmers’ method directly synthesize graphite to RGO by changing drying temperature. The characteristic result of RGO shows 22.52nm mesopore, and has a high specific surface area of 422.5m2/g, which can withstand high charging rate of 4.0C and keep capacity in 180mAh/g. After the nitrogen source of urea is doped into RGO, the nitrogen functional group of amino/amide is transformed into pyridinic/pyrrolic nitrogen functional group. The atoms on RGO aren’t planar structures, and lone pair of electrons on nitrogen atoms easily form a resonance structure with π electrons on RGO. This resonance structure allows electrons to be conducted from a singlet state to a triplet state, and increase the electron’s survival time. Although this nitrogen doping doesn’t greatly increase the specific capacity, increase the rate capability.
    After the parameter is adjusted, 0.2NRGO is the optimal parameter. The 0.2NRGO/Fe2O3 structure has a good rate capability of 1.0C for 100 cycles, and the specific capacity increases with the increase of cycles. This increase tendency may be attributed to the gradual activation of Fe2O3, the synergistic effect of graphene and Fe2O3, as well as the pseudocapacitive and the electron double layer capacitance (EDLC) of oxygen-containing graphene sheets.

    目錄 中文摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 鋰離子電池 1.3 石墨系負極半電池 1.4 金屬氧化物負極半電池 第二章 基礎原理與文獻探討 2.1 鋰離子電池的機制 2.2 石墨系材料應用於負極的特性 2.2.1氧化石墨烯 (Graphene Oxide,GO) 2.2.2還原氧化石墨烯(Reduced Graphene Oxide,RGO) 2.3 氮原子摻雜 (Nitrogen-doping) 2.4 過渡金屬氧化物材料(Transition Metal Oxide Material) 2.4.1三氧化二鐵(Ferric Oxide Material) 2.5 研究目的 第三章 實驗方法與步驟 3.1 實驗設備 3.2 實驗藥品與器材 3.3 實驗步驟 3.3.1合成還原/氧化石墨烯(Reduced Graphene Oxides/Graphene Oxides) 3.3.2合成氮摻雜還原氧化石墨烯 3.3.3合成三氧化二鐵奈米粒子包覆氮摻雜還原氧化石墨烯 3.3.4漿體製備及組裝鋰離子的負極半電池 3.4 材料分析與鑑定 3.4.1接觸角量測儀 (Contact angle) 3.4.2場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope,FESEM) 3.4.3紫外線-可見光吸收光譜 (UV-Vis spectrometer) 3.4.4 X光繞射分析儀(X-ray diffraction,XRD) 3.4.5比表面積分析 (Specific Surface Area and Pore size distribution Analyzer) 3.4.6熱重分析 (Thermogravimetric analyzer,TGA) 3.4.7 X光光電子能譜 (X-ray Photoelectron Spectroscopy,XPS) 3.4.8拉曼光譜學 (Raman Spectroscopy) 3.4.9 傅立葉轉換紅外光譜 (Fourier-transform infrared spectroscopy, FTIR) 3.5 電化學分析 3.5.1計時電位法 (Chronopotentiometry, CP) 3.5.2循環伏安法 (Cyclic Voltammetry,CV) 3.5.3 電化學交流電阻抗頻譜法 (Electrochemical impedance spectroscopy,EIS) 第四章 實驗結果與討論 4.1 合成還原氧化石墨烯的材料特性分析 4.1.1乾燥溫度影響合成的效應 4.1.2還原氧化石墨烯對濃度及溫度的影響 4.1.3還原氧化石墨烯顆粒孔隙行為 4.1.4還原氧化石墨烯的電化學分析 4.1.5石墨與還原氧化石墨烯的電池效能 4.2 合成氮摻雜還原氧化石墨烯的材料特性分析4.2.1氮摻雜還原氧化石墨烯的表面影像分析 4.2.2氮摻雜還原氧化石墨烯的FTIR & Raman光譜特性分析 4.2.3氮摻雜還原氧化石墨烯的XPS光譜特性分析 4.2.4氮摻雜還原氧化石墨烯的晶相分析 4.3 氮摻雜還原氧化石墨烯的電化學分析 4.3.1循環伏安法 4.3.2電化學阻抗分析 4.3.3氮摻雜還原氧化石墨烯的電池效能 4.4 合成NRGO/α-Fe2O3之結果討論 4.4.1 NRGO/ α-Fe2O3的SEM表面影像分析 4.4.2 NRGO/ α-Fe2O3的FTIR光譜 4.4.3 NRGO/ α-Fe2O3的Raman光譜分析 4.4.4 NRGO/ α-Fe2O3的XPS光譜特性分析 4.4.5 NRGO/ α-Fe2O3的電化學分析圖 4.4.6 NRGO/ α-Fe2O3的電池效能 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    1. 2019 諾貝爾化學獎:https://teaching.ch.ntu.edu.tw/nobel/2019
    2. Akhilash, M., Salini, P.S., John, B., Mercy, T.D., A journey through layered
    cathode materials for lithium ion cells – From lithium cobalt oxide to lithium-rich
    transition metal oxides, Journal of Alloys and Compounds, 2021(869): P159239
    3. Khalifa, H., El-Safty, S.A., Reda, A., Elmarakbi, A., Metawa, H., Shenashen, M.A.,
    Multifaceted geometric 3D mesopolytope cathodes and its directional transport
    gates for superscalable LIB models, Applied Materials Today, 2020(19): P100590
    4. Zhang, Y., Li, Y., Xia, X., Wang, X., Gu, C., Tu, J. High-energy cathode materials
    for Li-ion batteries: A review of recent developments, Science China Technological
    Sciences, 2015, 58(11): P1809-1828
    5. Stockfeel,能源環保,
    https://www.stockfeel.com.tw/%E9%8B%B0%E8%81%9A%E5%90%88%E7%8
    9%A9%E9%9B%BB%E6%B1%A0%EF%BC%88polymer-lithiumbattery%
    EF%BC%89%E7%9A%84%E7%89%B9%E6%80%A7/
    6. Lee, Y., Jeghan, S. M. N., Lee, G., Boost charging lithium-ion battery using
    expanded graphite anode with enhanced performance, Materials Letters,
    2021(299): P130077
    7. Zhang, Y., Wu, B., Mu, G., Ma, C., Mu, D., Wu, F., Recent progress and
    perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage,
    Journal of Energy Chemistry, 2022(64): P615-650
    8. Zhang, L., Liu, J., Wang, W., Li, D., Wang, C., Wang, P., Z, K., Li, Z., Synthesis
    of N-doped multi-cavity Sn/C composite and utilization to anode in lithium ion
    batteries, Materials Chemistry and Physics, 2021(260): P124199
    9. 材料世界網,高容量負極材料,
    https://www.materialsnet.com.tw/DocView.aspx?id=45770
    10. Zhang, H., Yang, Y., Ren, D., Wang, L., He, X., Graphite as anode materials:
    Fundamental mechanism, recent progress and advances, Energy Storage Materials,
    2021(36): P147-170
    95
    11. Zhang, L., Wu, H.B., Lou, X.W.D., Iron-Oxide-Based Advanced Anode Materials
    for Lithium-Ion Batteries, Advanced Energy Materials, 2013(4): P 1300958
    12. Li, T., Bai, Y., Wang, Y., Xu, H., Jin, H., Advances in transition-metal (Zn, Mn,
    Cu)-based MOFs and their derivatives for anode of lithium-ion batteries,
    Coordination Chemistry Reviews, 2020(410): P213221
    13. Zheng, G., Xing, Z., Gao, X., Nie, C., Xu, Z., Ju, Z., Fabrication of 2D Cu-BDC
    MOF and its derived porous carbon as anode material for high-performance Li/Kion
    batteries, Applied Surface Science, 2021(559): P149701
    14. Wang, X., Tang, S., Guo, W., Fu, Y., Manthiram, A., Advances in multimetallic
    alloy-based anodes for alkali-ion and alkali-metal batteries, Materials Today,
    2021(47): P5001
    15. Zhu, C., Saito, G., Akiyama, T., A facile solution combustion synthesis of nanosized
    amorphous iron oxide incorporated in a carbon matrix for use as a highperformance
    lithium ion battery anode material, Journal of Alloys and Compounds,
    2019(633): P424-429
    16. Wang, W., Qiu, W., Zhang, Y., Wang, X., Facile synthesis of free-standing
    nanorod structured ZnO@carbon nanofiber film and its application in lithium-ion
    battery anode, Solid State Sciences, 2020(109): P106430
    17. Abdollahi, A., Abnavi, A., Ghasemi, F., Ghasemi, S., Sanaee, Z., Mohajerzadeh, S.,
    Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon
    nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor,
    Electrochimica Acta, 2021(390): P138826
    18. He, L., Cao, J.H., Liang, T., Wu, D.Y., Effect of monomer structure on properties
    of polyimide as LIB separator and its mechanism study, Electrochimica Acta,
    2020(337): P135838
    19. Jia, H., Xu, W., Nonflammable nonaqueous electrolytes for lithium batteries,
    Current Opinion in Electrochemistry, 2021(30): P100781
    20. 材料世界網,高容量負極材料,
    https://www.materialsnet.com.tw/DocView.aspx?id=11734
    21. Hummers, W.S., Offeman, R.E., Preparation of Graphitic Oxide, Journal of the
    American Chemical Society, 1958(80): P1339
    96
    22. Habte, A.T., Ayele, D.W., Synthesis and Characterization of Reduced Graphene
    Oxide (rGO) Started from Graphene Oxide (GO) Using the Tour Method with
    Different Parameters, Advances in Materials Science and Engineering, 2019(2019):
    P5058163
    23. Chen, J., Yao, B., Li, C., Shi, G., An improved Hummers method for eco-friendly
    synthesis of graphene oxide, Carbon, 2013(64): P225-229
    24. Sohail, M., Saleem, M., Ullah, S., Saeed, N., Afridi, A., Khan, M., Arif, M.,
    Modified and improved Hummer’s synthesis of graphene oxide for capacitors
    applications, Modern Electronic Materials, 2017(3): P110-116
    25. Santamaría-Juárez, G., Gómez-Barojas, E., Quiroga-González, E., Sánchez-Mora,
    E., Quintana-Ruiz, M., Santamaría-Juárez, J.D., Safer modified Hummers’ method
    for the synthesis of graphene oxide with high quality and high yield, Materials
    Research Express, 2020, 6(12): P125631
    26. Saini, A., Kumar, A., Kumar, V., Chander, S., Synthesis of Graphene Oxide using
    Modified Hummer’s Method and its Reduction using Hydrazine Hydrate,
    International Journal of Engineering Trends and Technology, 2016, 40(2): P67-71
    27. Yu, H., Zhang, B., Bulin, C., Li, R., Xing, R., High-efficient Synthesis of Graphene
    Oxide Based on Improved Hummers Method, Scientific Reports, 2016(6): P36143
    28. Alam, S., Sharma, N., Kumar, L., Synthesis of Graphene Oxide (GO) by Modified
    Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide
    (rGO), Advances in Materials Science and Engineering, 2017(6): P1-18
    29. Kumar, P., Divya, N., Ratan, J.K., Study on the physico‑chemical properties of
    reduced graphene oxide with different degrees of reduction temperature, Journal
    of the Iranian Chemical Society, 2020, 18(1): P201-211
    30. Si, Y., Samulski, E. T., Synthesis of Water Soluble Graphene, Nano Letters, 2008,
    8(6): P1679-1682
    31. Hidayah, N., Liu, W.W., Lai, C.W., Noriman, N., Khe, C.-S., Hashim, U., Lee, H.
    C., Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide:
    Synthesis and Characterization, AIP Conference Proceedings, 2017(1892):
    P150002
    97
    32. Cai, D., Song, M. Preparation of fully exfoliated graphite oxide nanoplatelets in
    organic solvents, Journal of Materials Chemistry, 2007, 17(35): P3678-3680
    33. Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z., Zhang, X., Environment-Friendly
    Method To Produce Graphene That Employs Vitamin C and Amino Acid,
    Chemistry of Materials, 2010, 22(7): P2213-2218
    34. Sunderrajan, S., Miranda, L. R., Pennathur, G., Improved stability and catalytic
    activity of graphene oxide/chitosan hybrid beads loaded with porcine liver esterase,
    Preparative Biochemistry and Biotechnology, 2018, 48(4): P343-351
    35. Mei, R., Song, X., Hu, Y., Yang, Y., Zhang, J., Hollow reduced graphene oxide
    microspheres as a high-performance anode material for Li-ion batteries,
    Electrochimica Acta, 2015(153): P540-545
    36. Liu, J., Xie, D., Shi, W., Cheng, P., Coordination compounds in lithium storage
    and lithium-ion transport, Chemical Society Reviews, 2020, 49(6): P1624-1642
    37. Lin, J., Xu, Y., Wang, J., Zhang, B., Li, D., Wang, C., Jin, Y., Zhu, J., Nitrogendoped
    hierarchically porous carbonaceous nanotubes for lithium ion batteries,
    Chemical Engineering Journal, 2018(352): P964-971
    38. Gómez-Martín, A., Martinez-Fernandez, J., Ruttert, M., Winter, M., Placke, T.,
    Ramirez-Rico, J., An electrochemical evaluation of nitrogen-doped carbons as
    anodes for lithium ion batteries, Carbon, 2020(164): P261-271
    39. Yang, Y., Yuan, W., Zhang, X., Wang, C., Yuan, Y., Huang, Y., Ye, Y., Qiu, Z.,
    Tang, Y., A review on FexOy-based materials for advanced lithium-ion batteries,
    Renewable and Sustainable Energy Reviews, 2020(127): P109884
    40. Han, T., Wei, Y., Jin, X., Jiu, H., Zhang, L., Sun, Y., Tian, J., Shang, R., Hang, D.,
    Zhao, R., Hydrothermal self-assembly of a-Fe2O3 nanorings@graphene aerogel
    composites for enhanced Li storage performance, Journal of Materials Science,
    2019, 54(9): P7119-7130
    41. 科學Online ,高瞻自然科學教學資源平台
    https://highscope.ch.ntu.edu.tw/wordpress/?p=41141
    42. Hüfner, S. Photoelectron spectroscopy: principles and application, Springer
    Science& Business Media, 1995(4): P190-201
    98
    43. Wang, P., Chen, W., Wan, F., Wang, J., Hu, J., Cavity-enhanced Raman
    spectroscopy with optical feedback frequency-locking for gas sensing, Optics
    Express, 2019, 27(23): P33311-33324
    44. User manual of AutoLab electrochemical workstation
    45. Mulder, W.H., Sluyters, J.H., Pajkossy, T., Nyikos, L., Tafel current at fractal
    electrode. Connection with admittance spectra, Journal of Electroanalytical
    Chemistry, 1990(285): P103-115
    46. Kim, C.H., Pyun, S., Kim, J.H., An investigation of capacitance dispersion on the
    fractal carbon electrode with edge and basal orientation, Electrochemica Acta,
    2003, 48(23): P3455-3463
    47. Schiller, C.A., Strunz, W., The evaluation of experimental dielectric data of barrier
    coating by means of different model, Electrochemica Acta, 2001(46): P3619
    48. Jorcin, J.B., Orazem, M.E., Pebere, N., Tribollet, B., CPE Analysis by Local
    Electrochemical Impedance Spectroscopy, Electrochemica Acta, 2006(51): P1473-
    1479
    49. Cui, X., Zhu, Y., Li, F., Liu, D., Chen, J., Zhang, Y., Zhang, L.L., Ji, J., Enhanced
    rate capability of a lithium ion battery anode based on liquid–solid-solution
    assembly of Fe2O3 on crumpled graphene, RSC Advances, 2016, 6(11): P9007-
    9012
    50. Feng, X., Ren, D., Zhang, S., He, X., Wang, L., Ouyang, M., Influence of aging
    paths on the thermal runaway features of lithium-ion batteries in accelerating rate
    calorimetry tests, International Journal of Electrochemical Science, 2019(14): P44-
    58
    51. Zhou, W., Zhu, J., Cheng, C., Liu, J., Yang, H., Cong, C., Guan, C., Jia, X., Fan,
    H.J., Yan, Q., Li, C.M., Yu, T., A general strategy toward graphene@metal oxide
    core–shell nanostructures for high-performance lithium storage, Energy &
    Environmental Science, 2011, 4(12): P4954-4961
    52. Zhu, J., Wang, D., Wang, L., Lang, X., You, W., Facile synthesis of sulfur coated
    SnO2–graphene nanocomposites for enhanced lithium ion storage, Electrochimica
    Acta, 2013(91): P323-329
    53. Liang, R., Cao, H., Qian, D., Zhang, J., Qu, M., Designed synthesis of SnO2-
    99
    polyaniline-reduced graphene oxide nanocomposites as an anode material for
    lithium-ion batteries, Journal of Materials Chemistry, 2011, 21(44): P17654-17657
    54. Yuan, S., Chen, W., Zhang, L., Liu, Z., Liu, J., Liu, T., Li, G., Wang, Q., Nitrogen-
    Doped Graphene-Buffered Mn2O3 Nanocomposite Anodes for Fast Charging and
    High Discharge Capacity Lithium-Ion Batteries, Small, 2019, 15(50): P1903311
    55. Zhang, P., Liu, J., Zhou, C., Guo, S., Li, S., Yang, Y., Wu, J., Yu, D., Chen, H.,
    Zhao, M., Chen, L., Polypyrrole-derived nitrogen-doped carbon coated
    hierarchical MnO porous microspheres for highly reversible lithium storage,
    Journal of Electroanalytical Chemistry, 2020(856): P113733
    56. Jiang, C., Wang, J., Chen, Z., Yu, Z., Lin, Z., Zou, Z., Nitrogen-doped hierarchical
    carbon spheres derived from MnO2-templated spherical polypyrrole as excellent
    high rate anode of Li-ion batteries, Electrochimica Acta, 2017(245): P271-278
    57. Zhang, K., Han, P., Gu, L., Zhang, L., Liu, Z., Kong, Q., Zhang, C., Dong, S.,
    Zhang, Z., Yao, J., Xu, H., Cui, G., Chen, L., Synthesis of Nitrogen-Doped
    MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries, ACS
    Applied Materials & Interfaces, 2012, 4(2): P658-664
    58. Moon, J.H., Oh, M.J., Nam, M.G., Lee, J.H., Min, G.D., Park, J., Kim, W.J., Yoo,
    P.J., Carbonization/oxidation-mediated synthesis of MOF-derived hollow
    nanocages of ZnO/N-doped carbon interwoven by carbon nanotubes for lithiumion
    battery anodes, Dalton Transactions, 2019(48): P11941-11950
    59. Guo, Z., Reddy, M.V., Goh, B.M., San, A.K.P., Bao, Q., Loh, K.P.,
    Electrochemical Performance of Graphene and Copper Oxide Composites
    Synthesized from Metal-organic Framework (Cu-MOF), RSC Advances, 2013,
    3(41): P19051-19056
    60. Yang, Y., Zheng, F., Xia, G., Lun, Z., Chen, Q., Experimental and theoretical
    investigations of nitro-group doped porous carbon as an enhanced performance
    lithium-ion battery anode, Journal of Materials Chemistry A, 2015, 3(36): P18657-
    18666

    無法下載圖示 全文公開日期 2024/09/02 (校內網路)
    全文公開日期 2024/09/02 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE