簡易檢索 / 詳目顯示

研究生: 歐揚毅
Yang-Yi Ou
論文名稱: 氧化鉬負載在還原氧化石墨烯複合物觸媒應用於釩液流電池之研究
MoOx/rGO Composite Catalyst for Vanadium Flow Batteries
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 林昇佃
Shawn D. Lin
王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
黃信智
Hsin-Chih Huan
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 釩氧化還原液流電池電催化活性電極表面改質複合物觸媒
外文關鍵詞: Vanadium redox flow battery, electrocatalytic activity, electrode surface modification, composite catalyst
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中以高比表面積與良好導電性的石墨烯碳材作為載體,並負載氧化鉬顆粒來增加催化釩離子反應的活性。利用水熱法及化學氣相沉積儀製備出氧化鉬奈米顆粒,再以迴流法與高溫燒結將氧化鉬顆粒嵌入石墨烯中,形成複合物觸媒。藉由結構與性質分析來了解此複合物觸媒的特性,利用XRD確認複合物由二氧化鉬與還原氧化石墨烯所組成。在拉曼光譜分析的結果,可得知複合物中石墨烯碳材與二氧化鉬的結構缺陷增加,而在FT-IR與XPS分析中可確認複合物樣品含有大量的氧官能基。氧官能基為催化釩離子氧化還原反應的電化學活性點位,在電化學量測中可確認利用此方法合成的複合物觸媒具有良好的電子傳導性質,可歸因於還原氧化石墨烯的優良導電性。將此複合物觸媒應用於碳氈電極改質,以改質後的碳氈進行充、放電測試,其電極效能在40 mA/cm2與80 mA/cm2的充、放電電流密度下,分別表現出80.37%及77.39%的能量效率。相較於熱處理的碳氈,以此複合物觸媒改質的電極效能表現更優異的電催化效果。


    In this study, use the high specific surface area and good conductivity graphene material as a carrier, and load molybdenum oxide particles to enhance the catalytic activity to vanadium ion reaction. Molybdenum oxide nanoparticles are prepared by hydrothermal method and chemical vapor deposition system, and then molybdenum oxide particles are embedded in graphene by reflux method and high temperature sintering, to form a composite catalyst. Observe the characteristics of this composite catalyst through structure and property analysis, use XRD to confirm that the composite was composed of molybdenum dioxide and reduced graphene oxide. In the Raman spectroscopy analysis, it can confirm that the defect in graphene structure and molybdenum dioxide was increase in the composite, and it can know that the composite sample contains a large amount of oxygen functional groups by FT-IR and XPS analysis. Oxygen functional groups are electrochemical active sites for the vanadium ions redox reaction. In the electrochemical measurement, it can be confirmed that the composite catalyst synthesized by this method has good electronic conductivity properties, this can ascribe to the good conductivity of the reduced graphene oxide, the composite catalyst was applied to the modification of carbon felt electrodes, and the modified carbon felt was used for charging and discharging tests. The electrode modified by this composite exhibits the energy efficiency of 80.37% and 77.39% at the current densities of 40 mA/cm2 and 80 mA/cm2., compared with the heat-treated carbon felt, the electrode performance modified by the composite catalyst has better electrochemical performance.

    中文摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XIII 第一章:緒論 1 1.1 前言 1 1.2 全釩液流電池介紹 5 1.3 全釩液流電池特性分析 10 1.3.1 全釩液流電池作為大型儲能系統之優勢 10 1.3.2 全釩液流電池之缺點與面臨的挑戰 12 1.4 研究動機與目的 15 第二章 文獻回顧 17 2.1 釩離子反應機制 17 2.2 碳氈電極改質 19 2.3 奈米碳材修飾電極 26 2.4 金屬氧化物修飾電極 31 第三章 實驗步驟與方法 35 3.1 實驗規劃 35 3.2 實驗藥品與材料 36 3.3 實驗儀器設備 37 3.4 儀器分析原理 38 3.4.1 X光繞射分析儀 38 3.4.2 X光光電子能譜儀 40 3.4.3 場發射掃描式電子顯微鏡 42 3.4.4 穿透式電子顯微鏡(TEM) 43 3.4.5 傅立葉紅外線光譜儀 44 3.4.6 拉曼光譜分析儀 45 3.4.7 電化學分析儀 46 3.4 實驗步驟 48 3.4.1 MoO2顆粒製備 48 3.4.2 MoO2/rGO複合物觸媒合成 48 3.5 電化學測試 50 第四章 結果與討論 52 4.1 觸媒結構與性質分析 52 4.2 電化學效能分析 66 第五章 結論 75 文獻參考 76

    [1] https://www.moeaboe.gov.tw/ecw/populace/content/wHandMenuFile.ashx?menu_id=6985&file_id=5340107(經濟部能源局國家發展委員會 107年全國電力資源供需報告). (2018).
    [2] D. Rastler, Electricity Energy Storage Technology Options. (2010).
    [3] C.J. Rydh, Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80 (1999) 21-29.
    [4] M. Lopez-Atalaya, G. Codina, J.R. Perez, J.L. Vazquez, A. Aldaz, Optimization studies on a Fe/Cr redox flow battery. Journal of Power Sources, 39 (1992) 147-154.
    [5] S. Suresh, T. Kesavan, Y. Munaiah, I. Arulraj, S. Dheenadayalan, P. Ragupathy, Zinc–bromine hybrid flow battery: effect of zinc utilization and performance characteristics. RSC Advances, 4 (2014) 37947-37953.
    [6] D.M. Kabtamu, G.-Y. Lin, Y.-C. Chang, H.-Y. Chen, H.-C. Huang, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, The effect of adding Bi3+ on the performance of a newly developed iron–copper redox flow battery. RSC Advances, 8 (2018) 8537-8543.
    [7] E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. Journal of Power Sources, 16 (1985) 85-95.
    [8] E. Sum, M. Skyllas-Kazacos, A study of the V(II)/V(III) redox couple for redox flow cell applications. Journal of Power Sources, 15 (1985) 179-190.
    [9] M. Guarnieri, P. Mattavelli, G. Petrone, G. Spagnuolo, Vanadium Redox Flow Batteries: Potentials and Challenges of an Emerging Storage Technology. IEEE Industrial Electronics Magazine, 10 (2016) 20-31.
    [10] C. Yin, S. Guo, H. Fang, J. Liu, Y. Li, H. Tang, Numerical and experimental studies of stack shunt current for vanadium redox flow battery. Applied Energy, 151 (2015) 237-248.
    [11] D. Lee, S. Ryu, S.-H. Shin, J.-H. Kim, S.-H. Moon, A model study on effects of vanadium ion diffusion through ion exchange membranes in a non-aqueous redox flow battery. Journal of Renewable and Sustainable Energy, 11 (2019) 034701.
    [12] A. Hassan, T. Tzedakis, Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7. Journal of Energy Storage, 26 (2019) 100967.
    [13] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical reduction of VO2+ in acidic solution at high overpotentials. Electrochimica Acta, 51 (2005) 395-407.
    [14] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochimica Acta, 101 (2013) 27-40.
    [15] X. Qiu, T.A. Nguyen, J.D. Guggenberger, M.L. Crow, A.C. Elmore, A Field Validated Model of a Vanadium Redox Flow Battery for Microgrids. IEEE Transactions on Smart Grid, 5 (2014) 1592-1601.
    [16] X.-Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies. International Journal of Energy Research, 43 (2019) 6599-6638.
    [17] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources, 166 (2007) 531-536.
    [18] M. Skyllas-Kazacos, M. Kazacos, State of charge monitoring methods for vanadium redox flow battery control. Journal of Power Sources, 196 (2011) 8822-8827.
    [19] 馬振基 , 謝曉峰 , 江仁吉 , 蕭閔謙 , 楊士賢 , 張立學 新型儲能電池 − 全釩液流電池的原理與發展現況. 化學, 70(2012) 237-246, (2012).
    [20] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochimica Acta, 37 (1992) 1253-1260.
    [21] B. Sun, M. Skyllas-Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments. Electrochimica Acta, 37 (1992) 2459-2465.
    [22] S. Zhong, M. Skyllas-Kazacos, Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes. Journal of Power Sources, 39 (1992) 1-9.
    [23] F. Rahman, M. Skyllas-Kazacos, Vanadium redox battery: Positive half-cell electrolyte studies. Journal of Power Sources, 189 (2009) 1212-1219.
    [24] C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo, Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. Journal of Power Sources, 195 (2010) 890-897.
    [25] G. Oriji, Y. Katayama, T. Miura, Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochimica Acta, 49 (2004) 3091-3095.
    [26] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage. Advanced Energy Materials, 1 (2011) 394-400.
    [27] B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, Membrane Development for Vanadium Redox Flow Batteries. ChemSusChem, 4 (2011) 1388-1406.
    [28] Q. Xu, T.S. Zhao, P.K. Leung, Numerical investigations of flow field designs for vanadium redox flow batteries. Applied Energy, 105 (2013) 47-56.
    [29] K.H. Kim, B.G. Kim, D.G. Lee, Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB). Composite Structures, 109 (2014) 253-259.
    [30] K.J. Kim, Y.-J. Kim, J.-H. Kim, M.-S. Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Materials Chemistry and Physics, 131 (2011) 547-553.
    [31] L. Cao, M. Skyllas-Kazacos, C. Menictas, J. Noack, A review of electrolyte additives and impurities in vanadium redox flow batteries. Journal of Energy Chemistry, 27 (2018) 1269-1291.
    [32] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of Materials Chemistry A, 3 (2015) 16913-16933.
    [33] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon, 48 (2010) 3079-3090.
    [34] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery. Journal of Power Sources, 263 (2014) 104-109.
    [35] K.J. Kim, S.-W. Lee, T. Yim, J.-G. Kim, J.W. Choi, J.H. Kim, M.-S. Park, Y.-J. Kim, A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries. Scientific Reports, 4 (2014) 6906.
    [36] D. Dixon, D.J. Babu, J. Langner, M. Bruns, L. Pfaffmann, A. Bhaskar, J.J. Schneider, F. Scheiba, H. Ehrenberg, Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application. Journal of Power Sources, 332 (2016) 240-248.
    [37] Z. He, L. Shi, J. Shen, Z. He, S. Liu, Effects of nitrogen doping on the electrochemical performance of graphite felts for vanadium redox flow batteries. International Journal of Energy Research, 39 (2015) 709-716.
    [38] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. Journal of Power Sources, 195 (2010) 4375-4379.
    [39] M. Park, Y.-j. Jung, J. Kim, H.i. Lee, J. Cho, Synergistic Effect of Carbon Nanofiber/Nanotube Composite Catalyst on Carbon Felt Electrode for High-Performance All-Vanadium Redox Flow Battery. Nano Letters, 13 (2013) 4833-4839.
    [40] W. Li, Z. Zhang, Y. Tang, H. Bian, T.-W. Ng, W. Zhang, C.-S. Lee, Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2+/VO2+ Couple for All Vanadium Redox Flow Battery. Advanced Science, 3 (2016) 1500276.
    [41] L. Wei, T.S. Zhao, G. Zhao, L. An, L. Zeng, A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Applied Energy, 176 (2016) 74-79.
    [42] K. Amini, J. Gostick, M.D. Pritzker, Metal and Metal Oxide Electrocatalysts for Redox Flow Batteries. Advanced Functional Materials, 30 (2020) 1910564.
    [43] M.G. Hosseini, S. Mousavihashemi, S. Murcia-López, C. Flox, T. Andreu, J.R. Morante, High-power positive electrode based on synergistic effect of N- and WO3 -decorated carbon felt for vanadium redox flow batteries. Carbon, 136 (2018) 444-453.
    [44] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries. ACS Applied Materials & Interfaces, 8 (2016) 15369-15378.
    [45] Y. Jiang, X. Feng, G. Cheng, Y. Li, C. Li, Z. He, J. Zhu, W. Meng, H. Zhou, L. Dai, L. Wang, Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries. Electrochimica Acta, 322 (2019) 134754.
    [46] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery. Nano Letters, 14 (2014) 158-165.
    [47] Z. He, M. Li, Y. Li, J. Zhu, Y. Jiang, W. Meng, H. Zhou, L. Wang, L. Dai, Flexible electrospun carbon nanofiber embedded with TiO2 as excellent negative electrode for vanadium redox flow battery. Electrochimica Acta, 281 (2018) 601-610.
    [48] T. Tsoncheva, I. Genova, M. Dimitrov, E. Sarcadi-Priboczki, A.M. Venezia, D. Kovacheva, N. Scotti, V. dal Santo, Nanostructured copper-zirconia composites as catalysts for methanol decomposition. Applied Catalysis B: Environmental, 165 (2015) 599-610.
    [49] J. Vázquez-Galván, C. Flox, C. Fàbrega, E. Ventosa, A. Parra, T. Andreu, J.R. Morante, Hydrogen-Treated Rutile TiO2 Shell in Graphite-Core Structure as a Negative Electrode for High-Performance Vanadium Redox Flow Batteries. ChemSusChem, 10 (2017) 2089-2098.
    [50] I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nature Communications, 1 (2010) 73.
    [51] K. Ramakrishnan, C. Nithya, R. Karvembu, High-Performance Sodium Ion Capacitor Based on MoO2@rGO Nanocomposite and Goat Hair Derived Carbon Electrodes. ACS Applied Energy Materials, 1 (2018) 841-850.
    [52] Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 21 (2009) 2950-2956.
    [53] S.-P. Zhang, H.-O. Song, Supramolecular graphene oxide-alkylamine hybrid materials: variation of dispersibility and improvement of thermal stability. New Journal of Chemistry, 36 (2012) 1733-1738.
    [54] L. Zhang, H. Lin, L. Zhai, M. Nie, J. Zhou, S. Zhuo, Enhanced supercapacitor performance based on 3D porous graphene with MoO2 nanoparticles. Journal of Materials Research, 32 (2016) 292-300.
    [55] Y. Zhou, Q. Liu, D. Liu, H. Xie, G. Wu, W. Huang, Y. Tian, Q. He, A. Khalil, Y.A. Haleem, T. Xiang, W. Chu, C. Zou, L. Song, Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochimica Acta, 174 (2015) 8-14.
    [56] C. Liu, S. Luo, H. Huang, Y. Zhai, Z. Wang, Direct Growth of MoO2/Reduced Graphene Oxide Hollow Sphere Composites as Advanced Anode Materials for Potassium-Ion Batteries. ChemSusChem, 12 (2019) 873-880.
    [57] J. Zhang, G. Yang H Fau - Shen, P. Shen G Fau - Cheng, J. Cheng P Fau - Zhang, S. Zhang J Fau - Guo, S. Guo, Reduction of graphene oxide via L-ascorbic acid.
    [58] F. Gaspar, C.D. Nunes, Selective Catalytic Oxidation of Benzyl Alcohol by MoO2 Nanoparticles. Catalysts, 10 (2020).
    [59] Y. Shen, T. Jing, W. Ren, J. Zhang, Z.-G. Jiang, Z.-Z. Yu, A. Dasari, Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Composites Science and Technology, 72 (2012) 1430-1435.
    [60] K. Kosowska, P. Domalik-Pyzik, M. Nocuń, J. Chłopek, Chitosan and graphene oxide/reduced graphene oxide hybrid nanocomposites – Evaluation of physicochemical properties. Materials Chemistry and Physics, 216 (2018) 28-36.
    [61] R.S. Patil, M.D. Uplane, P.S. Patil, Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science, 252 (2006) 8050-8056.
    [62] W. Tang, C.X. Peng, C.T. Nai, J. Su, Y.P. Liu, M.V.V. Reddy, M. Lin, K.P. Loh, Ultrahigh Capacity Due to Multi-Electron Conversion Reaction in Reduced Graphene Oxide-Wrapped MoO2 Porous Nanobelts. Small, 11 (2015) 2446-2453.
    [63] V. Ramakrishnan, C. Alex, A.N. Nair, N.S. John, Designing Metallic MoO2 Nanostructures on Rigid Substrates for Electrochemical Water Activation. Chemistry – A European Journal, 24 (2018) 18003-18011.
    [64] P. Guha, B. Mohanty, R. Thapa, R.M. Kadam, P.V. Satyam, B.K. Jena, Defect-Engineered MoO2 Nanostructures as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 3 (2020) 5208-5218.
    [65] J. Jiang, W. Yang, H. Wang, Y. Zhao, J. Guo, J. Zhao, M. Beidaghi, L. Gao, Electrochemical Performances of MoO2/C Nanocomposite for Sodium Ion Storage: An Insight into Rate Dependent Charge/Discharge Mechanism. Electrochimica Acta, 240 (2017) 379-387.
    [66] T. Ressler, J. Wienold, R.E. Jentoft, T. Neisius, Bulk Structural Investigation of the Reduction of MoO3 with Propene and the Oxidation of MoO2 with Oxygen. Journal of Catalysis, 210 (2002) 67-83.
    [67] P. Thakur, J.C. Cezar, N.B. Brookes, R.J. Choudhary, D.M. Phase, K.H. Chae, R. Kumar, X-ray absorption and magnetic circular dichroism characterization of Mo1–xFexO2 (x = 0–0.05) thin films grown by pulsed laser ablation. Hyperfine Interactions, 197 (2010) 95-100.
    [68] G. Zhang, Q. Ji, K. Zhang, Y. Chen, Z. Li, H. Liu, J. Li, J. Qu, Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy, 59 (2019) 10-16.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2070/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE