簡易檢索 / 詳目顯示

研究生: Daniel Manaye Kabtamu
Daniel Manaye Kabtamu
論文名稱: Modification of graphite felt as a high-performance electrode for vanadium redox flow batteries
Modification of graphite felt as a high-performance electrode for vanadium redox flow batteries
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 游進陽
Chin-Yang Yu
施劭儒
Shao-Ju Shih
吳志明
Jyh-Ming Wu
楊昌中
Chang-Chung Yang
薛康琳
Kan-Lin Hsueh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 143
中文關鍵詞: Vanadium redox flow batteryenergy storage deviceelectrodeelectrocatalytic activitywater activationwater vaporNb-doped h-WO3 NWsgraphite feltWO3 nanowiresgraphenefoam
外文關鍵詞: Vanadium redox flow battery, energy storage device, electrode, electrocatalytic activity, water activation, water vapor, Nb-doped h-WO3 NWs, graphite felt, WO3 nanowires, graphene, foam
相關次數: 點閱:351下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全釩液流電池(VRFBs)的高生產成本和相對較低的能量效率,限制了其實用性。因此,進一步降低生產成本和提高全釩液流電池的性能。其中開發具有低成本的高活性電觸媒和電極材料在全釩液流電池設計中至關重要。
    首先,我們使用簡單,綠色,新穎且經濟有效的水氣處理法來改善石墨氈(GF)電極對全釩液流電池的電化學活性。在700 ℃下且水蒸汽注入時間為5分鐘所製備的石墨氈電極具有最高的電化學VO2+/VO2+電極活性。這歸因於在石墨氈電極纖維的表面上引入的產生高含量的含氧官能團(如–OH基團),其中–OH基團是釩氧化還原的電化學活性位點反應。在充放電試驗進一步證實,只需要5分鐘的GF水激活來提高VRFB電池的效率。在50 mA cm−2的電流密度下,平均庫倫效率,電壓效率和能量效率分別為95.06%、87.42%和83.10%。這些電壓和能量效率被確定為高於使用沒有水激活的熱處理的GF電極組裝的全釩液流電池的原始電極和原始的石墨氈電極。
    第二,本研究發展了一種低成本,高催化活性和穩定的鈮摻雜六方晶系三氧化鎢納米線觸媒。將這些納米線觸媒用作催化劑,以提高在全釩液流電池中用作正電極的石墨氈電極的電催化活性。研究了鈮摻雜石墨氈電極對全釩液流電池電化學性能的影響。循環伏安法和電化學阻抗光譜分析結果表明,鈮/鎢原子比為 0.03的鈮摻雜的六方晶系三氧化鎢納米線觸媒對所有測試電極中的VO2+/VO2+電極具有最高的電催化活性。這歸因於產生中等缺陷狀態的最佳鈮摻雜濃度,從而在三氧化鎢納米線中產生結構性障礙,例如氧空位,並導致在電極上產生VO2+/VO2+氧化還原反應的更多活性位點。此外,在充放電試驗中,使用鈮摻雜六方晶系三氧化鎢納米線(鈮/鎢原子比為 0.03)觸媒的單電池在80 mA cm−2的電流密度下表現出優異的能量效率為78.10%。其效率遠遠高於未處理石墨氈的67.12%和熱處理石墨氈72.01%的全電池效率。此外,在具有鈮摻雜的六方晶系三氧化鎢納米線(鈮/鎢原子比為 0.03)觸媒的穩定性試驗中,在30個循環後也幾乎沒有觀察到電池衰減。該結果說明,鈮摻雜的六方晶系三氧化鎢納米線在高酸性條件下釩離子的氧化還原反應期間的優異穩定性。
    第三,我們提出了經退火處理的三維三氧化鎢納米線/石墨烯片立體結構(3D-annealing WO3 NWs/GS)作為優秀和低成本的電催化觸媒。通過化學還原製備的石墨烯片的原位自組裝,然後進行冷凍乾燥和退火,作為全釩液流電池電極。經退火處理的三維三氧化鎢納米線/石墨烯片立體結構在所有測試樣品中對V2+/V3+和VO2+/VO2+氧化還原對顯示出最高的電催化活性。單電池充放電試驗進一步證實,使用經退火處理的三維三氧化鎢納米線/石墨烯片立體結構的全釩液流電池的單電池效率分別在80 mA cm−2和40 mA cm−2的電流密度下表現出優異的79.49%和83.73%的能量效率,這遠高於用原始石墨氈和未經退火處理的三維三氧化鎢納米線/石墨烯片立體結構的單電池效率。此外,它在50次充放電循環後沒有顯示出明顯的效率衰退。這歸因於W–O–C鍵的形成,證實了三氧化鎢納米線與石墨烯片具有強烈地鍵結,這是促進釩氧化還原反應氧化還原反應的關鍵。此外,三維三氧化鎢納米線/石墨烯片立體結構顯示出三維分層多孔結構,其可以提供更多的表面電活性位點以改善全釩液流電池的電化學性能。

    關鍵詞:釩氧化還原液流電池;儲能裝置;電極;電催化活性;水氣活化處理; 鈮摻雜的六方晶系三氧化鎢納米線;三氧化鎢納米線改質石墨氈;石墨烯片;立體結構


    High production cost and the relatively low energy efficiency of the vanadium redox flow battery (VRFB) still limit their practicability. Further efforts to reduce the production cost and improve the performance of VRFB should therefore be considered. Developing highly active electrocatalysts and electrode materials with low cost are crucial in VRFB design.
    First, we use a simple, green, novel, time-efficient, and potentially cost-effective water activation method to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as –OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge–discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm−2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.
    Second, we report a facile hydrothermal method to synthesize low-cost, high-catalytic-activity, and stable niobium-doped hexagonal tungsten trioxide nanowires (Nb-doped h-WO3 NWs); these NWs were employed as catalysts to improve the electrocatalytic activity of GF electrodes for use as positive electrodes in an all-vanadium redox flow battery. The effect of Nb doping and its composition on the electrochemical performance of GF electrodes for a VRFB was investigated. Cyclic voltammetry and electrochemical impedance spectroscopy results showed that Nb-doped h-WO3 NWs with a Nb/W atomic ratio of 0.03 exhibited the highest electrocatalytic activities for VO2+/VO2+ couples among all the tested electrodes. This observation was attributed to the optimal Nb-doping concentration producing moderate defect states, thereby creating structural disorders, such as oxygen vacancies, in WO3 and leading to the generation of more active sites for the VO2+/VO2+ redox reaction on the electrode. Moreover, in charge–discharge tests, a VRFB single cell using the Nb-doped h-WO3 NWs (Nb/W = 0.03) catalyst demonstrated an excellent energy efficiency of 78.10% with a current density of 80 mA cm−2. This efficiency is much higher than that demonstrated by VRFB cells with untreated GF (67.12%) and heat-treated GF obtained through conventional method (72.01%). Furthermore, in the stability test of a VRFB single cell with the Nb-doped h-WO3 NWs (Nb/W = 0.03) catalyst, almost no decay of the cell was observed even after 30 cycles. This observation indicates the outstanding stability of the cell during the redox reaction of vanadium ions under highly acidic conditions.
    Third, we present a three-dimensional annealed tungsten trioxide nanowire/graphene sheet (3D annealed WO3 NWs/GS) foam as an excellent and low-cost electrocatalyst. It was prepared using VRFB electrodes through the in-situ self-assembly of graphene sheets prepared by mild chemical reduction, followed by freeze-drying and annealing. The 3D annealed WO3 NWs/GS foam exhibits the highest electrocatalytic activities toward the V2+/V3+ and VO2+/VO2+ redox couples among all the tested samples. Charge–discharge tests further confirm that a single flow cell of VRFB using the 3D annealed WO3 NWs/GS foam demonstrates excellent energy efficiencies of 79.49% and 83.73% at current densities of 80 mA cm−2 and 40 mA cm−2, respectively, which is much higher than those of cells assembled with pristine GF and 3D WO3 NWs/GS foam without annealing treatment. Moreover, it shows no obvious degradation after 50 charge–discharge cycles. These results are attributed to the formation of new W–O–C bonds, confirming that the WO3 NWs are anchored strongly to the GS, which is key to facilitating the vanadium redox couples redox reactions. Moreover, the 3D annealed WO3 NWs/GS foam exhibits a 3D hierarchical porous structure, which can provide more surface electroactive sites to improve the electrochemical performance of VRFBs.
    Keywords: Vanadium redox flow battery; energy storage device; electrode; electrocatalytic activity; water activation; water vapor; Nb-doped h-WO3 NWs; graphite felt; WO3 nanowires, graphene; foam

    中文摘要 i Abstract iii Acknowledgments vi List of Figures xii List of Schemes xvii List of Tables xviii Chapter 1: Introduction 1 Chapter 2: Literature review 4 2.1. Operating principles of a VRFB 4 2.2. Mechanisms for the redox reactions of VRFB 6 2.3. Electrodes for VRFB 12 2.3.1. Electrode materials 13 2.3.1.1. Oxidation treatment 15 2.3.1.2. Nitrogenization treatment 16 2.3.1.3. Electrocatalyst 17 2.4. VRFB performance evaluation 22 2.5. Applications for VRFB 24 2.5.1. Load levelling 24 2.5.2. Peak shaving 25 2.5.3. Power quality control applications 25 2.5.4. Coupling with renewable energy sources 26 2.5.5. Electric vehicles 27 Chapter 3: Motivation 28 Chapter 4: Experimental instruments 32 4.1. List of chemicals and instruments 32 4.2. Characterization of materials 33 4.3. Electrochemical measurements 33 4.4. VRFB single cell performance evaluation 34 Chapter 5: Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries 37 5.1. Introduction 37 5.2. Experimental section 37 5.2.1. Preparation of modified GF electrodes 37 5.3. Results and discussion 39 5.3.1. Characterizations of the morphology and wettability of the samples 39 5.3.2. Electrochemical characterizations of the samples 42 5.3.3. Characterizations of the structure of the samples 48 5.3.4. VRFB single cell performance test 51 Chapter 6: Electrocatalytic activity of Nb-doped hexagonal WO3 nanowires-modified graphite felt as a positive electrode for vanadium redox flow battery 58 6.1. Introduction 58 6.2. Experimental section 59 6.2.1. Synthesis of h-WO3 and Nb-doped h-WO3 NWs on GFs 59 6.3. Results and discussion 60 6.3.1. Characterizations of the structure and morphology of h-WO3 and Nb-doped h-WO3 NWs -modified GF 60 6.3.2. Electrochemical characterizations of h-WO3 and Nb-doped h-WO3 NWs -modified GF 67 6.3.3. VRFB single cell performance test 72 Chapter 7: Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for an all vanadium redox flow battery 78 7.1. Introduction 78 7.2. Experimental section 80 7.2.1. Synthesis of WO3 NWs suspension 80 7.2.2. Synthesis of 3D annealed WO3 NWs/GS foam 80 7.3. Results and discussion 81 Chapter 8: Conclusions 103 8.1. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries (first work) 103 8.2. Electrocatalytic activity of Nb-doped hexagonal WO3 nanowires-modified graphite felt as a positive electrode for vanadium redox flow battery (second work) 104 8.3. Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for an all vanadium redox flow battery (third work) 104 Chapter 9: Summary and outlook 106 9.1. Overall conclusions of the dissertation 106 9.2. Outlook 108 References 110

    [1] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev., 111 (2011) 3577-3613.
    [2] P. Leung, X. Li, C. Ponce de León, L. Berlouis, C.T.J. Low, F.C. Walsh, RSC Advances, 2 (2012) 10125.
    [3] J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, ACS Nano, 7 (2013) 4764-4773.
    [4] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Nano Lett., 13 (2013) 1330-1335.
    [5] Z. He, L. Shi, J. Shen, Z. He, S. Liu, International Journal of Energy Research, 39 (2015) 709-716.
    [6] S. Park, H. Kim, J. Mater. Chem. A, 3 (2015) 12276-12283.
    [7] A. Ejigu, M. Edwards, D.A. Walsh, ACS Catal., 5 (2015) 7122-7130.
    [8] K.J. Kim, Y.-J. Kim, J.-H. Kim, M.-S. Park, Mater. Chem. Phys., 131 (2011) 547-553.
    [9] J. Liu, S. Liu, Z. He, H. Han, Y. Chen, Electrochim. Acta, 130 (2014) 314-321.
    [10] Z. González, C. Botas, P. Álvarez, S. Roldán, C. Blanco, R. Santamaría, M. Granda, R. Menéndez, Carbon, 50 (2012) 828-834.
    [11] S.-K. Park, J. Shim, J.H. Yang, C.-S. Jin, B.S. Lee, Y.-S. Lee, K.-H. Shin, J.-D. Jeon, Electrochim. Acta, 116 (2014) 447-452.
    [12] Z. González, C. Botas, C. Blanco, R. Santamaría, M. Granda, P. Álvarez, R. Menéndez, J. Power Sources, 241 (2013) 349-354.
    [13] M. Park, Y.J. Jung, J. Kim, H. Lee, J. Cho, Nano Lett., 13 (2013) 4833-4839.
    [14] G.C. M. Lopez-Atalaya, J. R. Perez, J. L. Vazquez and A. Aldaz, J. Power Sources, 39 (1992) 147-154.
    [15] G.P. Rajarathnam, M. Schneider, X. Sun, A.M. Vassallo, J. Electrochem. Soc., 163 (2015) A5112-A5117.
    [16] G. Nikiforidis, R. Cartwright, D. Hodgson, D. Hall, L. Berlouis, Electrochim. Acta, 140 (2014) 139-144.
    [17] J.M. Álvaro Cunha, Nuno Rodrigues and F. P. Brito, International Journal of Energy Research, 39 (2015) 889–918.
    [18] W. Wang, Z. Nie, B. Chen, F. Chen, Q. Luo, X. Wei, G.-G. Xia, M. Skyllas-Kazacos, L. Li, Z. Yang, Advanced Energy Materials, 2 (2012) 487-493.
    [19] B.Sun, M. Skyllas-Kazacos, J. Power Sources, 16 (1985) 85–95.
    [20] G.L. Soloveichik, Chem. Rev., 115 (2015) 11533-11558.
    [21] M. Rychcik and M. Sykllas-Kazacos, J. Power Sources, 22 (1988) 59 - 61
    [22] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Electrochim. Acta, 101 (2013) 27-40.
    [23] S. Jeong, S. Kim, Y. Kwon, Electrochim. Acta, 114 (2013) 439-447.
    [24] P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, G. Cui, Carbon, 49 (2011) 693-700.
    [25] H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, RSC Adv., 4 (2014) 61912-61918.
    [26] R.H. Huang, C.H. Sun, T.m. Tseng, W.k. Chao, K.L. Hsueh, F.S. Shieu, J. Electrochem. Soc., 159 (2012) A1579-A1586.
    [27] H.J. Lee, H. Kim, J. Electrochem. Soc., 162 (2015) A1675-A1681.
    [28] S. Wang, X. Zhao, T. Cochell, A. Manthiram, The Journal of Physical Chemistry Letters, 3 (2012) 2164-2167.
    [29] T. Liu, X. Li, H. Nie, C. Xu, H. Zhang, J. Power Sources, 286 (2015) 73-81.
    [30] X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, Electrochim. Acta, 138 (2014) 264-269.
    [31] M.H. Chakrabarti, N.P. Brandon, S.A. Hajimolana, F. Tariq, V. Yufit, M.A. Hashim, M.A. Hussain, C.T.J. Low, P.V. Aravind, J. Power Sources, 253 (2014) 150-166.
    [32] T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, A. Su, J. Solid State Electrochem., 16 (2011) 579-585.
    [33] K.J. Kim, S.W. Lee, T. Yim, J.G. Kim, J.W. Choi, J.H. Kim, M.S. Park, Y.J. Kim, Scientific reports, 4 (2014) 6906.
    [34] M. Park, Y.-j. Jung, J. Kim, H.i. Lee, J. Cho, Nano Lett., 13 (2013) 4833-4839.
    [35] C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, J Phys Chem Lett, 4 (2013) 1281-1294.
    [36] B.Sun, M. Skyllas-Kazacos, Electrochim. Acta, 37 (1992) 1253-1260.
    [37] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, J. Mater. Chem. A, 3 (2015) 16913-16933.
    [38] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochim. Acta, 89 (2013) 429-435.
    [39] W. Li, J. Liu, C. Yan, Electrochim. Acta, 56 (2011) 5290-5294.
    [40] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, J. Power Sources, 218 (2012) 455-461.
    [41] M. Rychcik and M. Skyllas-Kazacos, J. Power Sources, 19 (1987) 45 - 54.
    [42] H.-S. Kim, Bull. Korean Chem. Soc., 32 (2011) 571-575.
    [43] W. Li, J. Liu, C. Yan, Carbon, 49 (2011) 3463-3470.
    [44] W. Li, J. Liu, C. Yan, Electrochim. Acta, 79 (2012) 102-108.
    [45] W. Li, J. Liu, C. Yan, Carbon, 55 (2013) 313-320.
    [46] M. Park, I.-Y. Jeon, J. Ryu, J.-B. Baek, J. Cho, Advanced Energy Materials, 5 (2015) 1401550.
    [47] P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui, Energy & Environmental Science, 4 (2011) 4710.
    [48] H.-M. Tsai, S.-Y. Yang, C.-C.M. Ma, X. Xie, Electroanalysis, 23 (2011) 2139-2143.
    [49] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ACS Appl Mater Interfaces, 8 (2016) 15369-15378.
    [50] B.Sun, M. Skyllas-Kazacos, Electrochim. Acta, 37 (1992) 1253-1260

    [51] B.Sun, M. Skyllas-Kazacos, Electrochim. Acta, 37 (1992) 2459-2465.
    [52] B.Sun, M. Skyllas-Kazacos, Electrochim. Acta, 36 (1991) 513-517.
    [53] M. Park, J. Ryu, Y. Kim, J. Cho, Energy Environ. Sci., 7 (2014) 3727-3735.
    [54] X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, J. Power Sources, 250 (2014) 274-278.
    [55] Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochim. Acta, 132 (2014) 37-41.
    [56] Z. He, L. Dai, S. Liu, L. Wang, C. Li, Electrochim. Acta, 176 (2015) 1434-1440.
    [57] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Nano Lett., 13 (2013) 1330-1335.
    [58] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nano Lett., 14 (2014) 158-165.
    [59] T.S. Yue Men, Int. J. Electrochem. Sci., (2012) 3482 - 3488.
    [60] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, J. Power Sources, 263 (2014) 104-109.
    [61] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, J. Power Sources, 195 (2010) 4375-4379.
    [62] W.H. Wang, X.D. Wang, Electrochim. Acta, 52 (2007) 6755-6762.
    [63] C. Flox, J. Rubio-Garcia, R. Nafria, R. Zamani, M. Skoumal, T. Andreu, J. Arbiol, A. Cabot, J.R. Morante, Carbon, 50 (2012) 2372-2374.
    [64] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Electrochem. Commun., 13 (2011) 1379-1382.
    [65] K.J. Kim, M.S. Park, J.H. Kim, U. Hwang, N.J. Lee, G. Jeong, Y.J. Kim, Chem Commun (Camb), 48 (2012) 5455-5457.
    [66] M. Park, J. Ryu, J. Cho, Chem Asian J, 10 (2015) 2096-2110.
    [67] H.-M. Tsai, S.-J. Yang, C.-C.M. Ma, X. Xie, Electrochim. Acta, 77 (2012) 232-236.
    [68] Z. González, S. Vizireanu, G. Dinescu, C. Blanco, R. Santamaría, Nano Energy, 1 (2012) 833-839.
    [69] M.P. Johnson, A. Bar-Noy, O. Liu, Y. Feng, Sustainable Computing: Informatics and Systems, 1 (2011) 177-188.
    [70] T. Shigematsu, T. Kumamoto, H. Deguchi, T. Hara, in: IEEE/PES Transmission and Distribution Conference and Exhibition, 2002, pp. 1065-1070 vol.1062.
    [71] G. Kear, A.A. Shah, F.C. Walsh, International Journal of Energy Research, 36 (2012) 1105-1120.
    [72] in: Proceedings of 9th Annual Battery Conference on Applications and Advances, 1994, pp. 0_1.
    [73] S.S. Hosseiny, M. Saakes, M. Wessling, Electrochem. Commun., 13 (2011) 751-754.
    [74] M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, Y.-M. Chiang, Advanced Energy Materials, 1 (2011) 511-516.
    [75] X. Li, W. Mu, X. Xie, B. Liu, H. Tang, G. Zhou, H. Wei, Y. Jian, S. Luo, J. Hazard. Mater., 264 (2014) 386-394.
    [76] M. Ran, W. Sun, Y. Liu, W. Chu, C. Jiang, J. Solid State Chem., 197 (2013) 517-522.
    [77] S.P. Patole, P.S. Alegaonkar, H.-C. Lee, J.-B. Yoo, Carbon, 46 (2008) 1987-1993.
    [78] K.-Y. Lee, W.-M. Yeoh, S.-P. Chai, S. Ichikawa, A.R. Mohamed, Journal of Industrial and Engineering Chemistry, 18 (2012) 1504-1511.
    [79] M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Physica B: Condensed Matter, 405 (2010) 1745-1749.
    [80] S. Hussain, R. Amade, E. Bertran, Mater. Chem. Phys., 148 (2014) 914-922.
    [81] A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, G. Oomi, Carbon, 49 (2011) 294-298.
    [82] D.N.F. Satoshi Yasuda, Takeo Yamada, Junichi Satou, Akiyoshi Shibuya, Hirokazu Takai, M.Y. Kouhei Arakawa, and Kenji Hata, ACS Nano, 3 (2009) 4164–4170.
    [83] A. Magrez, J.W. Seo, R. Smajda, M. Mionić, L. Forró, Materials, 3 (2010) 4871-4891.
    [84] L. Zhang, Z.-G. Shao, X. Wang, H. Yu, S. Liu, B. Yi, J. Power Sources, 242 (2013) 15-22.
    [85] W. Wang, Z. Wei, W. Su, X. Fan, J. Liu, C. Yan, C. Zeng, Electrochim. Acta, 205 (2016) 102-112.
    [86] Z. He, L. Liu, C. Gao, Z. Zhou, X. Liang, Y. Lei, Z. He, S. Liu, RSC Advances, 3 (2013) 19774.
    [87] C. Flox, M. Skoumal, J. Rubio-Garcia, T. Andreu, J.R. Morante, Applied Energy, 109 (2013) 344-351.
    [88] J. Su, X. Feng, J.D. Sloppy, L. Guo, C.A. Grimes, Nano Lett., 11 (2011) 203-208.
    [89] S. Salmaoui, F. Sediri, N. Gharbi, C. Perruchot, S. Aeiyach, I.A. Rutkowska, P.J. Kulesza, M. Jouini, Appl. Surf. Sci., 257 (2011) 8223-8229.
    [90] C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc., 123 (2001) 10639-10649.
    [91] W. Zeng, B. Miao, T. Li, H. Zhang, S. Hussain, Y. Li, W. Yu, Thin Solid Films, 584 (2015) 294-299.
    [92] W. Mu, X. Xie, X. Li, R. Zhang, Q. Yu, K. Lv, H. Wei, Y. Jian, RSC Advances, 4 (2014) 36064.
    [93] A. Yan, C. Xie, D. Zeng, S. Cai, H. Li, J. Alloys Compd., 495 (2010) 88-92.
    [94] K.M. Ok, P.S. Halasyamani, D. Casanova, M. Llunell, P. Alemany, S. Alvarez, Chem. Mater., 18 (2006) 3176-3183.
    [95] H.Y. Chang, T. Sivakumar, K.M. Ok, P.S. Halasyamani, Inorg. Chem., 47 (2008) 8511-8517.
    [96] S. Polarz, J. Strunk, V. Ischenko, M.W. van den Berg, O. Hinrichsen, M. Muhler, M. Driess, Angew. Chem. Int. Ed. Engl., 45 (2006) 2965-2969.
    [97] X.C. Song, E. Yang, G. Liu, Y. Zhang, Z.S. Liu, H.F. Chen, Y. Wang, J. Nanopart. Res., 12 (2010) 2813-2819.
    [98] X. Xie, W. Mu, X. Li, H. Wei, Y. Jian, Q. Yu, R. Zhang, K. Lv, H. Tang, S. Luo, Electrochim. Acta, 134 (2014) 201-208.
    [99] F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Nanotechnology, 22 (2011) 335702.
    [100] X.C. Song, Y.F. Zheng, E. Yang, Y. Wang, Mater. Lett., 61 (2007) 3904-3908.
    [101] Z. Gu, H. Li, T. Zhai, W. Yang, Y. Xia, Y. Ma, J. Yao, J. Solid State Chem., 180 (2007) 98-105.
    [102] A.P. Shpak, A.M. Korduban, M.M. Medvedskij, V.O. Kandyba, J. Electron. Spectrosc. Relat. Phenom., 156-158 (2007) 172-175.
    [103] L.M. Bertus, C. Faure, A. Danine, C. Labrugere, G. Campet, A. Rougier, A. Duta, Mater. Chem. Phys., 140 (2013) 49-59.
    [104] S. Bathe, P. Patil, Solid State Ionics, 179 (2008) 314-323.
    [105] A. Yan, C. Xie, F. Huang, S. Zhang, S. Zhang, J. Alloys Compd., 610 (2014) 132-137.
    [106] J. Yu, H. Wen, M. Shafiei, M.R. Field, Z.F. Liu, W. Wlodarski, N. Motta, Y.X. Li, K. Kalantar-zadeh, P.T. Lai, Sensors and Actuators B: Chemical, 184 (2013) 118-129.
    [107] M.R. Mohamed, P.K. Leung, M.H. Sulaiman, Applied Energy, 137 (2015) 402-412.
    [108] H.T. Thu Pham, C. Jo, J. Lee, Y. Kwon, RSC Adv., 6 (2016) 17574-17582.
    [109] S. Chandrabose Raghu, M. Ulaganathan, T.M. Lim, M. Skyllas Kazacos, J. Power Sources, 238 (2013) 103-108.
    [110] T.M. Tseng, R.H. Huang, C.Y. Huang, C.C. Liu, K.L. Hsueh, F.S. Shieu, J. Electrochem. Soc., 161 (2014) A1132-A1138.
    [111] H. Wu, M. Xu, P. Da, W. Li, D. Jia, G. Zheng, Phys. Chem. Chem. Phys., 15 (2013) 16138-16142.
    [112] X. Li, S. Yang, J. Sun, P. He, X. Xu, G. Ding, Carbon, 78 (2014) 38-48.
    [113] M. Zhang, Y. Wang, M. Jia, Electrochim. Acta, 129 (2014) 425-432.
    [114] R. Azimirad, S. Safa, Mater. Chem. Phys., 162 (2015) 686-691.
    [115] Z. González, C. Flox, C. Blanco, M. Granda, J.R. Morante, R. Menéndez, R. Santamaría, J. Power Sources, 338 (2017) 155-162.
    [116] Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano, 4 (2010) 4324-4330.
    [117] H. Huang, Z. Yue, G. Li, X. Wang, J. Huang, Y. Du, P. Yang, Journal of Materials Chemistry A, 1 (2013) 15110.
    [118] S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, N. Dilawar, G. Gupta, T.D. Senguttuvan, Nanotechnology, 23 (2012) 205501.
    [119] S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Chem. Soc. Rev., 42 (2013) 794-830.
    [120] W. Chen, L. Yan, Nanoscale, 3 (2011) 3132-3137.
    [121] X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem., 21 (2011) 6494.
    [122] J.S. Lee, H.J. Ahn, J.C. Yoon, J.H. Jang, Phys. Chem. Chem. Phys., 14 (2012) 7938-7943.
    [123] R. Tian, Y. Zhang, Z. Chen, H. Duan, B. Xu, Y. Guo, H. Kang, H. Li, H. Liu, Scientific reports, 6 (2016) 19195.
    [124] R. Wang, C. Xu, J. Sun, L. Gao, H. Yao, ACS Appl Mater Interfaces, 6 (2014) 3427-3436.
    [125] S. Li, X. Cao, C.N. Schmidt, Q. Xu, E. Uchaker, Y. Pei, G. Cao, J. Mater. Chem. A, 4 (2016) 4242-4251.
    [126] M.E. Khan, M.M. Khan, M.H. Cho, RSC Adv., 6 (2016) 20824-20833.
    [127] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, J. Mater. Chem. A, 4 (2016) 11472-11480.
    [128] S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Small, 10 (2014) 2270-2279.
    [129] W. Chen, S. Li, C. Chen, L. Yan, Adv. Mater., 23 (2011) 5679-5683.
    [130] W. Feng, G. Wu, G. Gao, J. Mater. Chem. A, 2 (2014) 585-590.
    [131] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, J. Power Sources, 341 (2017) 270-279.
    [132] B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, Journal of Membrane Science, 510 (2016) 18-26.

    QR CODE