簡易檢索 / 詳目顯示

研究生: 劉藺慧
Lin-Hui Liu
論文名稱: 即時電位分析應用於全釩液流電池
Real-time Potential Analysis for All Vanadium Redox Flow Battery
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
Chen-Hao Wang
王復民
Fu-Ming Wang
郭俞麟
Yu-Lin Kuo
游進陽
Chin-Yang Yu
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 儲能系統釩液流電池電解液流速過電位
外文關鍵詞: energy storage system, vanadium redox flow battery, electrolyte flow rate, overpotential
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 全釩液流電池介紹 4 1.3 全釩液流電池特性分析 9 1.3.1 全釩液流電池作為大型儲能系統所具備的優勢 9 1.3.2 全釩液流電池的缺點與所面臨的挑戰 13 1.4 研究動機與目的 14 第二章 文獻回顧 15 2.1官能化電極之原理與發展 15 2.2 電極效率之提升 17 2.2.1 微波處理碳基電極 17 2.2.2 二氧化碳活化碳基電極 20 2.2.3 水活化碳基電極 22 2.3 電位損失之探討 25 第三章 實驗步驟與方法 29 3.1 實驗規劃 29 3.2 實驗材料及藥品 31 3.3 實驗儀器與設備 32 3.4 實驗步驟 33 3.4.1 單電池模組設計 33 3.4.2 電解液的流速測試 35 3.4.3 最適化的流速條件 37 3.4.4 二氧化碳活化之石墨氈 38 3.4.5 水活化之石墨氈 39 3.4.6 半電池測試條件 40 3.4.7 全電池測試條件 41 3.5 儀器分析原理 42 3.5.1電化學分析儀 42 第四章 結果與討論 45 4.1 電解液流速對電流密度之影響 45 4.2 優化的流速條件 49 4.3 循環伏安法 50 4.4 電化學阻抗分析 52 4.5 全電池分析 56 第五章 主要發現與結論 62 參考文獻 64

    [1] 李世光, 新能源政策. 經濟部能源局, (2016).
    [2] 謝錦隆, 薛康琳, 鍾岳霖, 戴志揚, 臺灣風力發電與液流電池系統儲電情境模擬. 台灣能源期刊, 第三卷 (2016) 55-78.
    [3] 劉玉章, 曾育貞, 呂永方, 沈錦昌, 鍾人傑, 電網級儲能技術研發現況與進展. 臺灣能源期刊, 第二卷 (2015) 169-190.
    [4] C.J. Rydh, Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80 (1999) 21-29.
    [5] L.H. Thaller, in: 9th Intersociety Energy Conversion Engineering Conference, 1974, pp. 924-928.
    [6] Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical Energy Storage for Green Grid. Chemical Reviews, 111 (2011) 3577-3613.
    [7] E. Sum, M. Rychcik, M.J.J.o.P.s. Skyllas-Kazacos, Investigation of the V (V)/V (IV) system for use in the positive half-cell of a redox battery. J. Power Sources, 16 (1985) 85-95.
    [8] E. Sum, M. Skyllas-Kazacos, A study of the V(II)/V(III) redox couple for redox flow cell applications. Journal of Power Sources, 15 (1985) 179-190.
    [9] X. Gao, Vanadium redox flow batteries for large-scale energy storage: electrochemistry, efficiency and spectroscoptic monitoring. (2012).
    [10] M. Al-Yasiri, J. Park, A novel cell design of vanadium redox flow batteries for enhancing energy and power performance. Applied Energy, 222 (2018) 530-539.
    [11] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of Materials Chemistry A, 3 (2015) 16913-16933.
    [12] C. Jizhong, X. Ziqiang, L. Bei, Research on the characteristics of the vanadium redox-flow battery in power systems applications. Journal of Power Sources, 241 (2013) 396-399.
    [13] C. Fabjan, J. Garche, B. Harrer, L. Jorissen, C. Kolbeck, F. Philippi, G. Tomazic, F. Wagner, The vanadium redox-battery: An efficient storage unit for photovoltaic systems. Electrochimica Acta, 47 (2001) 825-831.
    [14] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical reduction of VO2+ in acidic solution at high overpotentials. Electrochimica Acta, 51 (2005) 395-407.
    [15] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochimica Acta, 101 (2013) 27-40.
    [16] M. Vijayakumar, S.D. Burton, C. Huang, L. Li, Z. Yang, G.L. Graff, J. Liu, J. Hu, S.-K. Maria, Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery. Journal of Power Sources, 195 (2010) 7709-7717.
    [17] X.-Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies. International Journal of Energy Research, 0 (2019).
    [18] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19 (2009) 291-312.
    [19] M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas-Kazacos, T.M. Lim, Recent Advancements in All-Vanadium Redox Flow Batteries. Advanced Materials Interfaces, 3 (2016) 1500309.
    [20] X. Qiu, T.A. Nguyen, J.D. Guggenberger, M.L. Crow, A.C. Elmore, A Field Validated Model of a Vanadium Redox Flow Battery for Microgrids. IEEE Transactions on Smart Grid, 5 (2014) 1592-1601.
    [21] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources, 166 (2007) 531-536.
    [22] 馬振基, 謝曉峰, 江仁吉, 蕭閔謙, 楊士賢, 張立學, 新型儲能電池-全釩液流電池的原理與發展現況. 化學, 70 (2012) 237-246.
    [23] G. Oriji, Y. Katayama, T. Miura, Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochimica Acta, 49 (2004) 3091-3095.
    [24] C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, Vanadium Flow Battery for Energy Storage: Prospects and Challenges. The Journal of Physical Chemistry Letters, 4 (2013) 1281-1294.
    [25] M.H. Chakrabarti, R.A.W. Dryfe, E.P.L. Roberts, Evaluation of electrolytes for redox flow battery applications. Electrochimica Acta, 52 (2007) 2189-2195.
    [26] S. Zhong, M. Skyllas-Kazacos, Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes. Journal of Power Sources, 39 (1992) 1-9.
    [27] N. Kausar, R. Howe, M. Skyllas-Kazacos, Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes. Journal of applied electrochemistry, 31 (2001) 1327-1332.
    [28] H. Zhou, H. Zhang, P. Zhao, B. Yi, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochimica Acta, 51 (2006) 6304-6312.
    [29] W.H. Wang, X.D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta, 52 (2007) 6755-6762.
    [30] M. Skyllas-Kazacos, Novel vanadium chloride/polyhalide redox flow battery. Journal of Power Sources, 124 (2003) 299-302.
    [31] H.Q. Zhu, Y.M. Zhang, L. Yue, W.S. Li, G.L. Li, D. Shu, H.Y. Chen, Graphite–carbon nanotube composite electrodes for all vanadium redox flow battery. Journal of Power Sources, 184 (2008) 637-640.
    [32] G.J.W. Radford, J. Cox, R.G.A. Wills, F.C. Walsh, Electrochemical characterisation of activated carbon particles used in redox flow battery electrodes. J. Power Sources, 185 (2008) 1499-1504.
    [33] S. Zhong, C. Padeste, M. Kazacos, M. Skyllas-Kazacos, Comparison of the physical, chemical and electrochemical properties of rayon- and polyacrylonitrile-based graphite felt electrodes. J. Power Sources, 45 (1993) 29-41.
    [34] W. Li, J. Liu, C. Yan, Graphite–graphite oxide composite electrode for vanadium redox flow battery. Electrochim. Acta, 56 (2011) 5290-5294.
    [35] E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources, 16 (1985) 85-95.
    [36] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochem. Commun., 13 (2011) 1379-1382.
    [37] W.Y. Li, J.G. Liu, C.W. Yan, Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon, 49 (2011) 3463-3470.
    [38] W.Y. Li, J.G. Liu, C.W. Yan, Modified multiwalled carbon nanotubes as an electrode reaction catalyst for an all vanadium redox flow battery. J. Solid State Electrochem., 17 (2013) 1369-1376.
    [39] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery. Journal of Power Sources, 263 (2014) 104-109.
    [40] J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez, Microwave heating processes involving carbon materials. Fuel Processing Technology, 91 (2010) 1-8.
    [41] J.F. González, S. Román, C.M. González-García, J.M.V. Nabais, A.L. Ortiz, Porosity Development in Activated Carbons Prepared from Walnut Shells by Carbon Dioxide or Steam Activation. Industrial & Engineering Chemistry Research, 48 (2009) 7474-7481.
    [42] S.K. Ryu, H. Jin, D. Gondy, N. Pusset, P. Ehrburger, Activation of carbon fibres by steam and carbon dioxide. Carbon, 31 (1993) 841-842.
    [43] M. Ran, W. Sun, Y. Liu, W. Chu, C. Jiang, Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition. Journal of Solid State Chemistry, 197 (2013) 517-522.
    [44] S.P. Patole, P.S. Alegaonkar, H.-C. Lee, J.-B. Yoo, Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon, 46 (2008) 1987-1993.
    [45] K.-Y. Lee, W.-M. Yeoh, S.-P. Chai, S. Ichikawa, A.R. Mohamed, The role of water vapor in carbon nanotube formation via water-assisted chemical vapor deposition of methane. Journal of Industrial and Engineering Chemistry, 18 (2012) 1504-1511.
    [46] M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method. Physica B: Condensed Matter, 405 (2010) 1745-1749.
    [47] S. Hussain, R. Amade, E. Bertran, Study of CNTs structural evolution during water assisted growth and transfer methodology for electrochemical applications. Materials Chemistry and Physics, 148 (2014) 914-922.
    [48] A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, G. Oomi, Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition. Carbon, 49 (2011) 294-298.
    [49] S. Yasuda, D.N. Futaba, T. Yamada, J. Satou, A. Shibuya, H. Takai, K. Arakawa, M. Yumura, K. Hata, Improved and Large Area Single-Walled Carbon Nanotube Forest Growth by Controlling the Gas Flow Direction. ACS Nano, 3 (2009) 4164-4170.
    [50] A. Magrez, J.W. Seo, R. Smajda, M. Mionić, L. Forró, Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth. Materials, 3 (2010).
    [51] D. Aaron, C.-N. Sun, M. Bright, A.B. Papandrew, M.M. Mench, T.A. Zawodzinski, In situ kinetics studies in all-vanadium redox flow batteries. ECS Electrochemistry Letters, 2 (2013) A29-A31.
    [52] Q. Liu, A. Turhan, T.A. Zawodzinski, M.M. Mench, In situ potential distribution measurement in an all-vanadium flow battery. Chemical Communications, 49 (2013) 6292-6294.
    [53] E. Ventosa, M. Skoumal, F.J. Vázquez, C. Flox, J.R. Morante, Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver–silver sulfate. Journal of Power Sources, 271 (2014) 556-560.
    [54] H. Lim, J.S. Yi, D. Lee, Operando studies on through-plane cell voltage losses in vanadium redox flow battery. Journal of Power Sources, 422 (2019) 65-72.
    [55] H. Lim, J.S. Yi, D. Lee, Correlations of Through-Plane Cell Voltage Losses, Imbalance of Electrolytes, and Energy Storage Efficiency of a Vanadium Redox Flow Battery. ChemSusChem, 12 (2019) 1459-1468.
    [56] Q. Xu, T.S. Zhao, P.K. Leung, Numerical investigations of flow field designs for vanadium redox flow batteries. Applied Energy, 105 (2013) 47-56.
    [57] X. Ke, J.M. Prahl, J.I.D. Alexander, J.S. Wainright, T.A. Zawodzinski, R.F. Savinell, Rechargeable redox flow batteries: flow fields, stacks and design considerations. Chemical Society Reviews, 47 (2018) 8721-8743.
    [58] X. Ke, J.I.D. Alexander, J.M. Prahl, R.F. Savinell, Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel. Journal of Power Sources, 270 (2014) 646-657.
    [59] S. Kim, Vanadium Redox Flow Batteries: Electrochemical Engineering, in: Energy Storage Devices, IntechOpen, 2019.
    [60] J. Newman, K.E. Thomas-Alyea, Electrochemical systems, John Wiley & Sons, 2012.
    [61] X. Ma, H. Zhang, C. Sun, Y. Zou, T. Zhang, An optimal strategy of electrolyte flow rate for vanadium redox flow battery. Journal of Power Sources, 203 (2012) 153-158.
    [62] Bard A. J. , F. L.R., Electrochemical Methods-Fundamentals and Applications.
    [63] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon, 48 (2010) 3079-3090.
    [64] P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui, Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy & Environmental Science, 4 (2011) 4710-4717.
    [65] R.-H. Huang, C.-H. Sun, T.-M. Tseng, W.-K. Chao, K.-L. Hsueh, F.-S. Shieua, Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery. Journal of the Electrochemical Society, 159 (2012) A1579-A1586.
    [66] Y.-C. Chang, J.-Y. Chen, D.M. Kabtamu, G.-Y. Lin, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application. Journal of Power Sources, 364 (2017) 1-8.
    [67] D. Chen, M.A. Hickner, E. Agar, E.C. Kumbur, Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 5 (2013) 7559-7566.
    [68] Z. Li, G. Weng, Q. Zou, G. Cong, Y.-C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy, 30 (2016) 283-292.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE